
We recommend you cite the published version.
The publisher’s URL is: http://dx.doi.org/10.1093/rheumatology/ken254

Refereed: Yes

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Rheumatology following peer review. The definitive publisher-authenticated version ”McCabe, Candy and Blake, David R. (2008) An embarrassment of pain perceptions? Towards an understanding of and explanation for the clinical presentation of CRPS type 1. Rheumatology, 47 (11). pp. 1038?1043” is available online at: http://dx.doi.org/10.1093/rheumatology/ken254

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.
An embarrassment of pain perceptions? Toward an understanding of and explanation for the clinical presentation of CRPS Type 1.

Candida S McCabe PhD RGN, David R Blake MB FRCP
The Royal National Hospital for Rheumatic Diseases, in conjunction with The School for Health, University of Bath, Bath. UK.

Address for correspondence and requests for reprints: Dr. C.S. McCabe, The Royal National Hospital for Rheumatic Diseases, Upper Borough Walls, Bath, BA1 1RL, UK.
Email: candy.mccabe@rnhrd.nhs.uk
Tel No.: 00 44 (0)1225 787047
Fax: 00 44 (0)1225 473435

Running header: CRPS: an embarrassment of pain perceptions?
Word count: 3999
Abstract

Objectives

Complex Regional Pain Syndrome, a fairly common problem in rheumatological and orthopaedic practice, is an allodynic pain state of uncertain pathology often variably and unpredictably responsive to treatments. Although published diagnostic criteria are available, in the reality of clinical practice these do not appear to encompass the wide variety of symptoms that a patient may present with. This leads to scepticism on the part of the clinician and confusion for the sufferer. This article aims to provide some explanations for an often bewildering clinical picture. We provide a construct for the plethora of symptoms which we have entitled “the embarrassment of pain perceptions”.

Methods

With the aid of a case report we examine recent research that suggests how peripherally based symptoms and signs arise from changes within the central nervous system, with particular attention given to the control function of the motor-proprioceptive integrative system.

Results

We speculate how these changes within the central nervous system may provide the patient with CRPS the ability to access complex layers of lower level perceptions that are normally suppressed. We propose that such a system may explain some of the clinical puzzlements seen in this condition.

Conclusions

We suggest that the complexities of CRPS provide an insight into brain development through evolution which is a fruitful area for interdisciplinary clinical and scientific research.

Key words:

Complex Regional Pain Syndrome, Pain, motor control system,
Introduction

It is well known that the relationship between the degree of injury and the level of pain experienced is poor. It has been realised, but recently, that the reasons for this are indeed multifarious. However, descriptions of excessive pain in the presence of minor, or no injury accompanied by a disgust and neglect of an apparently functional limb are still commonly considered indicative of a somatoform disorder which may be cared for by our colleagues in Psychiatry rather than the classical presentation of Complex Regional Pain Syndrome (CRPS). We suggest that our failure to appreciate that pains are simply one manifestation of multiple responses to injury, or the perceived threat of injury, lies at the heart of our difficulties. This provides a fundamental reason for our limited ability to progress treatments in chronic allodynic pain states, particularly those unresponsive, or only partially responsive, to the most powerful of analgesics, opiates. We are, we suggest, approaching the problem in the wrong way. This article will discuss recent research, supported by a case report that suggests the seemingly bizarre clinical descriptions by a patient with CRPS may arise from changes in the central nervous system. Furthermore, we will propose that these changes enable access to lower brain perceptions that contribute additionally to the patient’s symptomatology. It is not our intention to cover theories on peripheral mechanisms or assess the evidence for therapeutic options and management techniques as these have been extensively covered elsewhere [see 1-7].

Complex Regional Pain Syndrome (CRPS) may arise following major nerve damage (Type II), minor trauma or spontaneously (Type I). The onset of symptoms may be immediate but for the majority it is within one month of trauma or on immobilisation of a limb, such as casting after a fracture [8]. Approximately 50% of sufferers go on to develop chronic symptoms and long term physical impairment [9,10]. Disturbances in sensory, motor and autonomic pathways are present usually in a single limb; though it may occur in multiple limbs and other body regions [11-13]. The degree of disturbance in any one of these systems may be variable across time and even
fluctuate on an hourly basis. Published incidence rates of CRPS range from 5.46 to 26.2 per 100,000 person years with the wide range indicative of the problems with diagnosis and the multiple professions that sufferers often encounter before a diagnosis is confirmed [14,15]. This is further complicated by the many names by which CRPS has been known in the past [11] and the close similarity in nomenclature between ‘Complex’ and ‘Chronic’ regional pain syndrome.

Clinical presentation

CRPS was eloquently first described by Weir Mitchell in 1872 having witnessed the experience of injured soldiers in the American Civil War [16]. The suffering of one particular soldier with Causalgia (CRPS Type II) is described in some detail.

“On the second day the pain began. It was burning and darting, ….sensation was lost or lessened in the limb, and .. paralysis of motion came on in the hand and forearm. The pain was so severe that a touch anywhere, or shaking of the bed, or a heavy step, caused it to increase.”

Two years later the pain was still at the level where the soldier could not tolerate “Friction of the clothes, at any point of the entire surface..” as this “shoots into the hand” increasing his burning pain. He would allow no-one to touch him “accept with a wetted hand, and even then is careful to exact careful manipulation”.

These descriptions capture the intensely distressing nature of CRPS and the disparate range of seemingly bizarre symptoms that a patient may describe. We present here a case report of a female patient with CRPS Type 1 who was treated at the Royal National Hospital for Rheumatic Diseases in Bath, UK some 130 years after Weir Mitchell’s soldier, but whose symptoms and descriptions bear a striking similarity to those he wrote of.

A case of CRPS: an embarrassment of perceptions.

Case report

A woman aged 42 years presented at the CRPS clinic with CRPS Type 1 in the left hand seven months after suffering a severe viral (herpes labialis) infection of her mouth. The infection had resulted in intense pain in her mouth and throat and widespread musculoskeletal pains.
Approximately two months after successful treatment and resolution of her viral symptoms she reported a spontaneous onset of pain in her left hand. This initially focused around her left index finger and wrist but the pain gradually extended up her arm to her elbow. At the time she had significant swelling of the lower arm, loss of hair over the painful site and an increase in nail growth on the left hand only. She reported that the limb had felt intensely hot compared to her right, and fluctuated between a dusky purple colour and a more mottled version of her right arm. As she was a busy farmer's wife she had continued to be involved in the daily activities of the farm, including milking the cows, and had been surprised to find that use of her left arm, although painful at the time, had actually helped to improve the pain somewhat.

Five months after her symptom onset she presented at the clinic and positioned herself in the clinic chair so that her left arm was protected from casual passers-by and she did not use her left arm in her normal gestures as she recounted her story (see Table 1 for a summary of signs and symptoms). She described her pain as ‘burning’ in quality and exacerbated by movement, cold water and vibration (particularly travelling in the car). When her pain was severe she was aware of a ‘re-awakening’ of the pain in her mouth and on the left side of her face, similar to that which she had experienced with her viral infection. She was also aware that stress exacerbated all her symptoms and found it perplexing that they could vary so much over the time course of the day, particularly the colour and temperature changes. Although trying to remain as active as possible she chose to avoid social situations as she found noisy environments intolerable and was fearful of others ‘knocking into’ her limb. Only on careful questioning did she reveal that although hyper-vigilant of her painful limb, as her positioning and manner clearly indicated, she felt that the limb did not ‘belong to her’ from her elbow downwards. She also had a strong desire to amputate her left limb and could illustrate with her right hand the exact point at which she felt the incision should be placed. Above this site, her arm was perceived by her as ‘normal’ and ‘belonging to her’.
On examination there was clear evidence of autonomic changes with unilateral colour and temperature changes. The left lower arm felt warmer to touch than the right, and the left upper arm cooler. An objective temperature difference of >2.5 °C between the right and left hands was confirmed via infrared thermal imaging (Fig 1). The left hand and wrist were oedematous and the nails longer than on the right. There was full range of movement at the left elbow and shoulder but it was reduced in the wrist. The patient was able to oppose all fingers to the thumb but the movement was painful and slow on the affected side. No attempt to passively manipulate the limb was made due to the patient’s intense fear of touch. Allodynia to light touch and hyperalgesia to pin prick extended from finger tips to just above the left elbow. Standardised quantitative sensory testing using von Frey hairs demonstrated a raised mechanical detection threshold on the left arm (left 2.44g, right arm 2.83g.) but no other hemisensory discrepancies on the trunk or lower limbs.

When approached by the examiner, level with her left arm, the patient reported that she was aware of a tingling sensation in her left hand and an increase in the pain. This response to a the threat of touch, a non-painful stimulus evoking a painful response, we have termed ‘conflict’ allodynia as we perceive the response is generated by the threat of an encounter with the examiner. These painful perceptions were reported by the patient when the examiner’s hand was approximately 30cm from them and it was heightened in intensity the closer the examiner moved their hand towards the left wrist despite giving firm reassurance that the limb would never actually be touched. When the same procedure was repeated, but the examiner was level with the left side of the patient’s face, she again reported the changes in sensation in her left hand.

When asked to close her eyes and ‘visualise’ the left limb she reported that she perceived her left hand as significantly larger than the right and her left arm shorter than the right between the elbow and wrist. She had not been aware of these altered body perceptions prior to undertaking this assessment and they were lost when she actively looked at her left limb. There was evidence of widespread referred sensations [17] with touch to the left side of her face and axilla referred to the underside of her left wrist, and touch to the right wrist identically matched to the left. The
patient struggled to identify the individual digits on her left hand when asked to number them as they were touched, but had no problems with those on her right.

With a trial of mirror visual feedback {18} she was able to perform bilateral synchronised movements and she perceived that her movements were less stiff on the left when aided by this device, but there was no immediate change in pain levels. She was given information regarding the on-going use of this device and desensitisation techniques with instructions to involve the whole length of her left limb when performing these tasks and repeat them ‘little and often’, approximately 5-6 times a day. She was also referred for a two week in-patient stay at the hospital in order to receive daily physiotherapy, hydrotherapy and occupational therapy.

Five months after the patient’s first presentation, and three months after in-patient rehabilitation she was assessed again in the CRPS clinic. She was able to make a fist with her left hand and had noticed a reduction in the frequency of colour and temperature changes. Her pain and function had improved (Brief Pain Inventory on presentation: pain intensity = 5.25, pain interference = 4.5, at 5 months: pain intensity = 4, pain interference = 2). She reported feeling greater ‘ownership’ of her left arm and it only remained ‘alien’ around the wrist. There remained some residual oedema around the left metacarpal phalangeal joints and phantom swelling was reported in the wrist, thumb and first finger. This first finger was the only digit to be mis-identified on touch with the eyes closed. The patient was still aware of occasional sensation in the left side of her face and on examination referred sensations were still present in this region, but other referred sites had been lost. The patient was now able to touch the length of her arm and there was no evidence of conflict allodynia.

The above case report describes, in our opinion, the classic presentation of CRPS Type 1 and is highly representative of the type of patient we see in our routine clinics. Although our patient, would meet the proposed revised criteria for CRPS Type 1 [19] it is apparent these criteria do not encompass the multiple, more subtle, aspects of this complex condition, some of which are well described in the literature [20-22]. As many of these other signs and symptoms can only be
elicited through careful, and often lengthy, examination they may not be detected by the time pressured clinician, and if mentioned by the patient, do not fit neatly within the necessarily tight diagnostic criteria. It is only when they are viewed in relation to the potential underlying mechanisms that a greater understanding of their significance can be gained for both patient and clinician.

Central mechanism theories in CRPS

It has been strongly argued that CRPS is a neurological disease of the central nervous system involving sympathetic, afferent and motor systems [23, 24]. The CNS interacts with the peripheral system via neural and chemical channels and has direct control over the autonomic system thereby giving rise to the clinical anomaly of peripheral vasomotor and sudomotor changes without peripheral neural damage [23,24]. Evidence suggests that this interaction between peripheral and central systems arises from a number of sources including sympathetic afferent coupling, reorganisation of the central autonomic control, changes in the somatomotor system and peripheral inflammation [24]. Central theorists propose that the clinical picture of CRPS, with motor, sensory and autonomic changes, arises from a mismatch between the sensory representations and the motor and autonomic representations in the brain which in turn alter the central regulatory mechanisms of the sympathetic, somatomotor and afferent systems [see 24 for review]. Where research has focused in recent years is how this mismatch may arise, be perpetuated and perhaps therapeutically modified with much of this work centred on the motor control system and its interaction with other central mechanisms such as the autonomic nervous system. It is to this body of work that this article will now turn to.

The motor-control system and the affects of anomalies within it

The role of the motor control system is to enable an individual to perform smooth, coordinated movements and to prepare them for the consequences of that movement. To facilitate this the central nervous systems that generate motor activity are closely coupled to sensory feedback systems and are monitored to detect deviations from that predicted [25,26]. Frith et al.
[26] have proposed that from an assimilation of allocentric (external) and egocentric (internal) variables the motor control system ‘predicts’ a certain response from the sensory system, and ‘controllers’ within the system compare this desired state with the motor command required to achieve that state. The controllers then produce the appropriate motor commands to achieve the desired outcome.

The prediction, or ‘efference’ copy, is often only a rough approximation of the actual consequences of a motor command, but it is needed to prepare the system for the consequences of that movement, assess performance if there is a delay in response, differentiate between egocentric and allocentric influences on the system, and maintain a constant update on the interplay between sensory and motor systems. This prediction is then compared to that of actual sensory feedback, and the current state of the system modified accordingly [26].

This sequence of events is processed through a complex interaction between central structures and systems including the visual cortex, basal ganglia, thalamus and somatosensory cortex (see 27 for detail). The somatosensory cortex, thalamus and brain stem are vulnerable to remapping following deafferentation or even changing sensory experiences as seen in CRPS and other chronic pain conditions [28-31]. A direct correlation has been demonstrated between the extent of cortical reorganisation and the level of pain perceived in CRPS with pain reducing as the changes on the somatopic map start to reverse [32,33]. Clinically, as our case report demonstrates, these changes are evident in the patient as perceived altered body perception, mis-identification of digits and the presence of referred sensations. Importantly, these clinical symptoms also diminish as pain reduces [17].

Recent research has demonstrated, in those with upper limb CRPS, that similar re-mapping occurs in the primary motor cortex contralateral to the affected limb [34]. However, unlike the reduced representation of the affected hand seen on S1, the representation of the painful area on the motor cortex becomes enlarged. This has been shown to correlate with poor function in motor planning tasks, particularly those that require integration with visual and proprioceptive cues such
as gripping an object [34]. If internal variables become distorted, such as via neural plasticity within the somatosensory and motor cortices, it is easy to see how corrupted efference copies may be generated in CRPS thereby creating a mismatch between expected sensory feedback and actual. Our group have demonstrated, in healthy volunteers and those with chronic pain, that a range of somaesthetic disturbances can be transiently generated in such a scenario [35, 36]. We have also suggested that as smooth functioning of the motor control system is crucial to the safety of an individual then any perceived abnormality within such a system would alert the autonomic nervous system to prepare for defence strategies via sympathetic stimulation [35]. This may explain how the peripheral symptoms and central changes seen in CRPS are linked and why stress appears to have a direct effect on the frequency and intensity of patient reported symptoms. Since imagined and observed movements share many of the same processing pathways as actual movements [37] then a corrupted prediction of sensory feedback would result in pain and other sensory disturbances in a CRPS affected limb when intended or attempted movements are performed. This is seen when patients with CRPS attempt to mentally rotate their affected limb into a position determined by a visualised image; they have slower response times than when the activity is imagined with their non-affected limb, and report increased pain and swelling [38,39]. The clinician will observe that a patient may take time to ‘connect’ with their affected limb when asked to initiate a movement, and that they report increased levels of pain before any actual movement is observed. Other motor disorders in CRPS include weakness and tremor in the affected limb, slowness of repetitive movements (bradykinesia), dystonias and myoclonus (see 40 for review). The usually flexed postures of a dystonia and the sudden, involuntarily jerk of myoclonus can be particularly distressing to a patient and have a significant impact on their daily function. The frequency of these disorders increases with the duration of the condition [13] and research suggests that central neural networks involved with the inhibition of movement may be dysfunctional at the spinal and cortical levels [40].
Therapeutic interventions designed to reverse motor-sensory discrepancies have proved beneficial for some [18, 41] but we still have much to learn regarding the optimum frequency and intensity of these interventions in the clinical setting. The patient presented in our case report quickly recognised the benefits of continuing to use her affected limb despite experiencing ongoing pain. Early active use of the affected limb is considered best practice and this may help to not only improve motor-sensory communication but also increase perceived ownership of the limb. Further research in this area is greatly needed.

Access to lower brain perceptions

Although the work described above has shed new light on potential mechanisms in CRPS there remain many unanswered questions. We still cannot explain why some individuals develop CRPS whilst others don’t, though perhaps recent work on the genetics of CRPS may help [42,43]. Perhaps more perplexing still is that an individual may sustain a similar injury at separate time points in their life but on only one occasion does it develop into CRPS. There are also the daily, or even hourly, fluctuations in symptoms that perplex the patient and physician and lead to a highly unpredictable course to the condition. Finally, and perhaps the greatest frustration of all, is that CRPS may develop immediately following a relatively innocuous trauma but can take years to resolve, if at all. It is these, and other ongoing puzzlements derived from our detailed clinical histories, that led us to look outside the traditional CRPS literature and seek answers elsewhere. It struck us that some of the symptoms that our patients describe are difficult to understand in the highly evolved animal, such as a desire to amputate a limb or a perception of sections missing from that limb. Therefore, we looked to see if answers may lie in our evolutionary history.

Much of our ‘lower order’ information is lost to us as our evolving brains have developed ‘higher order’ systems by which we interpret our sensory experiences and understand the world around us. Nevertheless, this primitive lower level information is still utilised in certain situations, such as to enable us to make the rapid judgements on the trustworthiness of an individual that are necessary for our safety [44]. When the brain becomes damaged or altered we can get a glimpse
into these lower order systems and this can be particularly clearly seen in savants with early infantile autism [45]. These children are highly gifted in such skills as arithmetic or art and their abilities appear ‘super human’. For example, a savant child of three can draw a perfectly proportioned, apparently galloping horse, whilst their non-autistic peers are struggling with a misshapen outline [46]. It is thought that such skills are possible as these children are still able to access the basic building blocks by which we construct an exact image or calculate a sum without the overlay of complex conceptualisation. For example, we are able to perceive something as three dimensional without being aware of the complex processes involved to arrive at this concept.

Research into ‘blindsight’ has also shown that when higher cognitive functions that interpret visual input are disrupted by damage to the geniculo-striate pathway, involving the retina, thalamus and striate cortex, the individual is still able to detect movement of a visual stimulus though they are not consciously aware of having perceived that stimulus. Even in those following hemispherectomy they remain aware of a perception of movement but cannot state the direction of that movement [see 47 for summary].

What if in CRPS the changes in central mechanisms result in the sufferer having enhanced access to the lower level raw information contained within us all? This may explain the heightened awareness of peripersonal space that we see with conflict allodynia. We use congruent information from vision and proprioception to determine the position of our body in relation to surrounding stimuli but recent research has shown that we can effectively extend the outer limits of our body when using a tool so that the tool becomes part of us [48]. It is postulated that this ability to expand your peripersonal space evolved so that an organism can act on objects which are not directly within their reach [49]. Perhaps in CRPS the heightened awareness of a need to protect the painful limb results in access to, and operation of, this lower evolutionary pathway and results in an extended peripersonal space that clinically we see as conflict allodynia. However, like the savants, this access (and hence control) is lost as the central mechanisms revert to normal. The apparently irrational desire for amputation of a CRPS affected limb and neglect of that limb, may
also arise from direct access to previous encryptions for autotomy that were present in our earlier life forms. Likewise, the macro- and microsomatognosis described by our patients when they close their eyes and describe their affected limbs perhaps gives us an insight into how our evolutionary earlier limbs were constructed. This model allows us to understand how and why such individual variance exists within a condition that has distinctive core criteria.

One area that may be implicated in this access to lower brain functions in CRPS is the thalamus, as indicated above in conditions such as blindsight. In CRPS there is imaging evidence of altered regional cerebral blood flow that later ‘normalises’ with relief of the CRPS symptoms [50]. Further work is needed to see if such changes in blood flow are not only associated with pain but also the patient’s perception of and ‘neglect’ of their affected limb.

In conclusion, the clinical presentation of CRPS may be a confusing picture for both patient and clinician as the range of symptoms displayed are only partially described by the current diagnostic criteria. Recent work on central mechanism theories is starting to help us understand these clinical puzzlements but further work is needed to help us design effective therapeutic approaches. CRPS may be more easily understood if it is viewed as a manifestation of multiple responses to a perceived or actual injury which includes access to earlier evolutionary pathways.

Acknowledgements

D R Blake holds an endowed Chair – ‘The Glaxo Wellcome Chair in Locomotor Sciences’. C.McCabe is an Arthritis Research Campaign Senior Lecturer and an ICAC award supports the Royal National Hospital for Rheumatic Diseases, Bath, UK

Conflict of interest

No Conflict of Interest has been declared by the authors.
CRPS: an embarrassment of pain perceptions?

References

Key messages

- Clinical presentation of CRPS is only partially described by diagnostic criteria.
- Central mechanism theories explain some of the bizarre clinical symptoms.
- Access to normally suppressed evolutionary pathways may explain other perceptual abnormalities.
Figure 1 Thermal images of left and right hands at time of presentation. Mean temperature values (°C) of right (R) and left (L) hands: Dorsal R = 29.8, L = 30.9, R-L = -2.1, Palm R = 28.9, L = 31.4, R-L = -2.5, Fingers R = 23.3, L = 26.6, R-L = -3.3.
Table 1 Case study signs and symptoms on presentation in the affected limb

<table>
<thead>
<tr>
<th>Signs</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>X</td>
</tr>
<tr>
<td>‘Conflict’ allodynia</td>
<td>X</td>
</tr>
<tr>
<td>Oedema</td>
<td>X</td>
</tr>
<tr>
<td>Unilateral temperature changes</td>
<td>X</td>
</tr>
<tr>
<td>Unilateral colour changes</td>
<td>X</td>
</tr>
<tr>
<td>Increased nail growth and loss of hair</td>
<td>X</td>
</tr>
<tr>
<td>Referred sensations</td>
<td>X</td>
</tr>
<tr>
<td>Neglect</td>
<td>X</td>
</tr>
<tr>
<td>Body perception disturbances</td>
<td>X</td>
</tr>
<tr>
<td>Mis-identification of digits</td>
<td>X</td>
</tr>
<tr>
<td>Reduced range of movement</td>
<td>X</td>
</tr>
<tr>
<td>Weakness</td>
<td>X</td>
</tr>
</tbody>
</table>