Human-machine interaction issues in quality control based on on-line image classification

Lughofer, E., Smith, J., Tahir, M., Caleb-Solly, P., Eitzinger, C., Sannen, D. and Nuttin, M. (2009) Human-machine interaction issues in quality control based on on-line image classification. IEEE Transactions on Systems Man & Cybernetics, Part A: Systems and Humans, 39 (5). pp. 960-971. ISSN 1083-4427

[img]
Preview
PDF - Published Version
823kB

Publisher's URL: http://dx.doi.org/10.1109/TSMCA.2009.2025025

Abstract

This paper considers on a number of issues that arise when a trainable machine vision system learns directly from humans. We contrast this to the ldquonormalrdquo situation where machine learning (ML) techniques are applied to a ldquocleanedrdquo data set which is considered to be perfectly labeled with complete accuracy. This paper is done within the context of a generic system for the visual surface inspection of manufactured parts; however, the issues treated are relevant not only to wider computer vision applications such as medical image screening but also to classification more generally. Many of the issues we consider arise from the nature of humans themselves: They will be not only internally inconsistent but also will often not be completely confident about their decisions, particularly if they are making decisions rapidly. People will also often differ systematically from each other in the decisions they make. Other issues may arise from the nature of the process, which may require the ML to have the capacity for real-time online adaptation in response to users' input. Because of this, it may be that the users cannot always provide input to a consistent level of detail. We describe how all of these issues may be tackled within a coherent methodology. By using a range of classifiers trained on data sets from a compact disc imprint production process, we present results which demonstrate that training methods designed to take proper consideration of these issues may actually lead to improved performance.

Item Type:Article
Additional Information:© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Uncontrolled Keywords:human–machine interaction (HMI), image classification, classifier structures, online adaptation, partial confidence, resolving contradictory inputs, variable input levels
Faculty/Department:Faculty of Environment and Technology > Department of Computer Science and Creative Technologies
ID Code:11059
Deposited By: A. Lawson
Deposited On:25 Aug 2010 10:12
Last Modified:17 Aug 2013 18:12

Request a change to this item

Total Document Downloads in Past 12 Months

Document Downloads

Total Document Downloads

More statistics for this item...
Copyright 2013 © UWE better together