A tutorial for competent memetic algorithms: Model, taxonomy and design issues

Krasnogor, N. and Smith, J. (2005) A tutorial for competent memetic algorithms: Model, taxonomy and design issues. IEEE Transactions on Evolutionary Computation, 9 (5). pp. 474-488. ISSN 1089-778X Available from: http://eprints.uwe.ac.uk/11069

PDF - Published Version

Publisher's URL: http://dx.doi.org/10.1109/TEVC.2005.850260


The combination of evolutionary algorithms with local search was named "memetic algorithms" (MAs) (Moscato, 1989). These methods are inspired by models of natural systems that combine the evolutionary adaptation of a population with individual learning within the lifetimes of its members. Additionally, MAs are inspired by Richard Dawkin's concept of a meme, which represents a unit of cultural evolution that can exhibit local refinement (Dawkins, 1976). In the case of MA's, "memes" refer to the strategies (e.g., local refinement, perturbation, or constructive methods, etc.) that are employed to improve individuals. In this paper, we review some works on the application of MAs to well-known combinatorial optimization problems, and place them in a framework defined by a general syntactic model. This model provides us with a classification scheme based on a computable index D, which facilitates algorithmic comparisons and suggests areas for future research. Also, by having an abstract model for this class of metaheuristics, it is possible to explore their design space and better understand their behavior from a theoretical standpoint. We illustrate the theoretical and practical relevance of this model and taxonomy for MAs in the context of a discussion of important design issues that must be addressed to produce effective and efficient MAs.

Item Type:Article
Additional Information:© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Uncontrolled Keywords:competent memetic algorithms
Faculty/Department:Faculty of Environment and Technology > Department of Computer Science and Creative Technologies
ID Code:11069
Deposited By: A. Lawson
Deposited On:25 Aug 2010 08:04
Last Modified:18 Mar 2016 03:50

Request a change to this item

Total Document Downloads in Past 12 Months

Document Downloads

Total Document Downloads

More statistics for this item...