
We recommend you cite the published version. The publisher’s URL is http://dx.doi.org/10.1016/j.aml.2007.10.016

Refereed: No

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.
The \(k \)-Tuple Domination Number Revisited

Vadim Zverovich
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol, BS16 1QY
UK
vadim.zverovich@uwe.ac.uk

Abstract
The following fundamental result for the domination number \(\gamma(G) \) of a graph \(G \) was proved by Alon and Spencer, Arnautov, Lovász and Payan:
\[
\gamma(G) \leq \frac{\ln(\delta + 1) + 1}{\delta + 1}n,
\]
where \(n \) is the order and \(\delta \) is the minimum degree of vertices of \(G \). A similar upper bound for the double domination number was found by Harant and Henning [On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29–34], and for the triple domination number by Rautenbach and Volkmann [New bounds on the \(k \)-domination number and the \(k \)-tuple domination number. Applied Math. Letters 20 (2007) 98–102], who also posed the interesting conjecture on the \(k \)-tuple domination number: for any graph \(G \) with \(\delta \geq k - 1 \),
\[
\gamma_{\times k}(G) \leq \frac{\ln(\delta - k + 2) + \ln(\hat{d}_{k-1} + \hat{d}_{k-2}) + 1}{\delta - k + 2}n,
\]
where \(\hat{d}_m = \sum_{i=1}^n \left(\frac{d_i}{m} \right) /n \) is the \(m \)-degree of \(G \). This conjecture, if true, would generalise all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin and V. Zverovich, A generalised upper bound for the \(k \)-tuple domination number. Discrete Math. (to appear)].

In this paper, we prove Rautenbach–Volkmann’s conjecture.

Keywords: graphs, domination number, double domination, triple domination, \(k \)-tuple domination.

1 Notation
All graphs will be finite and undirected without loops and multiple edges. If \(G \) is a graph of order \(n \), then \(V(G) = \{v_1, v_2, ..., v_n\} \) is the set of vertices in \(G \), \(d_i \) denotes the degree of \(v_i \) and \(d = \sum_{i=1}^n d_i/n \) is the average degree of \(G \). Let \(N(x) \) denote the neighbourhood of a vertex \(x \). Also let \(N(X) = \bigcup_{x \in X} N(x) \) and \(N[X] = N(X) \cup X \). Denote by \(\delta(G) \) and \(\Delta(G) \) the minimum and maximum degrees of vertices of \(G \), respectively. Put \(\delta = \delta(G) \) and \(\Delta = \Delta(G) \). A set \(X \) is called a dominating set if every vertex not in \(X \) is adjacent to a vertex in \(X \). The minimum cardinality of a dominating set of \(G \) is the domination number \(\gamma(G) \). A set \(X \) is called a \(k \)-tuple dominating set of \(G \) if for every vertex \(v \in V(G) \), \(|N[v] \cap X| \geq k \). The minimum cardinality of a \(k \)-tuple dominating set of \(G \) is the \(k \)-tuple domination number \(\gamma_{\times k}(G) \). The \(k \)-tuple domination number is only defined for graphs with \(\delta \geq k - 1 \). It is easy to see that \(\gamma(G) = \gamma_{\times 1}(G) \) and \(\gamma_{\times k}(G) \leq \gamma_{\times k'}(G) \) for \(k \leq k' \). The 2-tuple domination number \(\gamma_{\times 2}(G) \) is called the double domination number and the 3-tuple domination number \(\gamma_{\times 3}(G) \) is called the triple domination number. A number of interesting results on the \(k \)-tuple domination number can be found in [3]–[8] and [11].
2 Introduction

The following fundamental result was proved by many authors:

Theorem 1 ([1, 2, 9, 10]) For any graph G,
\[
\gamma(G) \leq \frac{\ln(\delta + 1) + 1}{\delta + 1}n.
\]

A similar upper bound for the double domination number was found by Harant and Henning [4]:

Theorem 2 ([4]) For any graph G with $\delta \geq 1$,
\[
\gamma_{\times 2}(G) \leq \frac{\ln \delta + \ln(d + 1) + 1}{\delta}n.
\]

Rautenbach and Volkmann posed the following interesting conjecture for the k-tuple domination number:

Conjecture 1 ([11]) For any graph G with $\delta \geq k - 1$,
\[
\gamma_{\times k}(G) \leq \frac{\ln (\delta - k + 2) + \ln \left(\sum_{i=1}^{n} \left(\frac{d_i + 1}{k - 1} \right) \right) - \ln(n) + 1}{\delta - k + 2}n.
\]

For $m \leq \delta$, let us define the m-degree \hat{d}_m of a graph G as follows:
\[
\hat{d}_m = \hat{d}_m(G) = \sum_{i=1}^{n} \left(\frac{d_i}{m} \right) / n.
\]

Note that \hat{d}_1 is the average degree d of a graph and $\hat{d}_0 = 1$. Also, we put $\hat{d}_{-1} = 0$.

Since
\[
\left(\frac{d_i + 1}{k - 1} \right) = \left(\frac{d_i}{k - 1} \right) + \left(\frac{d_i}{k - 2} \right),
\]
we see that the above conjecture can be re-formulated as follows:

Conjecture 1′ For any graph G with $\delta \geq k - 1$,
\[
\gamma_{\times k}(G) \leq \frac{\ln (\delta - k + 2) + \ln (\hat{d}_{k-1} + \hat{d}_{k-2}) + 1}{\delta - k + 2}n.
\]

It may be pointed out that this conjecture, if true, would generalise Theorem 2 and also Theorem 1 taking into account that $\hat{d}_{-1} = 0$. Rautenbach and Volkmann proved the above conjecture for the triple domination number:

Theorem 3 ([11]) For any graph G with $\delta \geq 2$,
\[
\gamma_{\times 3}(G) \leq \frac{\ln(\delta - 1) + \ln(\hat{d}_2 + d) + 1}{\delta - 1}n.
\]

The next result generalises all the above theorems, but it is still far from Conjecture 1′.

Theorem 4 ([3]) For any graph G with $\delta \geq k - 1$,
\[
\gamma_{\times k}(G) \leq \frac{\ln(\delta - k + 2) + \ln \left(\sum_{m=1}^{k-1} (k - m)\hat{d}_m + \epsilon \right) + 1}{\delta - k + 2}n,
\]
where $\epsilon = 1$ if $k = 1$ or 2, and $\epsilon = -d$ if $k \geq 3$.

2
3 Proof of the Conjecture

The following theorem proves Rautenbach–Volkmann’s conjecture.

Theorem 5 For any graph G with $\delta \geq k - 1$,

$$\gamma_{\times k}(G) \leq \frac{\ln(\delta - k + 2) + \ln(\hat{d}_{k-1} + \hat{d}_{k-2}) + 1}{\delta - k + 2} n.$$

Proof: Let A be a set formed by an independent choice of vertices of G, where each vertex is selected with the probability p, $0 \leq p \leq 1$. For $m = 0, 1, ..., k - 1$, let us denote

$$B_m = \{v_i \in V(G) - A : |N(v_i) \cap A| = m\}.$$

Also, for $m = 0, 1, ..., k - 2$, we denote

$$A_m = \{v_i \in A : |N(v_i) \cap A| = m\}.$$

For each set A_m, we form a set A'_m in the following way. For every vertex in the set A_m, we take $k - m - 1$ neighbours not in A and add them to A'_m. Such neighbours always exist because $\delta \geq k - 1$. It is obvious that $|A'_m| \leq (k - m - 1)|A_m|$. For each set B_m, we form a set B'_m by taking $k - m - 1$ neighbours not in A for every vertex in B_m. We have $|B'_m| \leq (k - m - 1)|B_m|$.

We construct the set D as follows:

$$D = A \cup \left(\bigcup_{m=0}^{k-2} A'_m \right) \cup \left(\bigcup_{m=0}^{k-1} B_m \cup B'_m \right).$$

The set D is a k-tuple dominating set. Indeed, if there is a vertex v which is not k-tuple dominated by D, then v is not k-tuple dominated by A. Therefore, v would belong to A_m or B_m for some m, but all such vertices are k-tuple dominated by the set D by construction.

The expected value of $|D|$ is

$$E(|D|) \leq E\left(|A| + \sum_{m=0}^{k-2} |A'_m| + \sum_{m=0}^{k-1} |B_m| + \sum_{m=0}^{k-1} |B'_m|\right).$$

$$\leq E\left(|A| + \sum_{m=0}^{k-2} (k - m - 1)|A_m| + \sum_{m=0}^{k-1} (k - m)|B_m|\right).$$

$$= E(|A|) + \sum_{m=0}^{k-2} (k - m - 1)E(|A_m|) + \sum_{m=0}^{k-1} (k - m)E(|B_m|).$$

We have

$$E(|A|) = \sum_{i=1}^{n} P(v_i \in A) = pn.$$

Also,

$$E(|A_m|) = \sum_{i=1}^{n} P(v_i \in A_m) = \sum_{i=1}^{n} p \binom{d_i}{m} p^m (1 - p)^{d_i - m}$$ \[\leq p^{m+1}(1 - p)^{\delta - m} \sum_{i=1}^{n} \binom{d_i}{m} \]

$$= p^{m+1}(1 - p)^{\delta - m} \hat{d}_m n.$$
and
\[
E(|B_m|) = \sum_{i=1}^{n} P(v_i \in B_m)
\]
\[
= \sum_{i=1}^{n} (1 - p) \left(\frac{d_i}{m} \right) p^m (1 - p)^{d_i - m}
\]
\[
\leq p^m (1 - p)^{\delta - m + 1} \sum_{i=1}^{n} \left(\frac{d_i}{m} \right)
\]
\[
= p^m (1 - p)^{\delta - m + 1} \hat{d}_m n.
\]

Taking into account that \(\hat{d}_{-1} = 0 \), we obtain
\[
E(|D|) \leq pn + \sum_{m=0}^{k-2} (k - m - 1)p^{m+1}(1 - p)^{\delta - m} \hat{d}_m n + \sum_{m=0}^{k-1} (k - m)p^m (1 - p)^{\delta - m + 1} \hat{d}_m n
\]
\[
=pn + \sum_{m=1}^{k-1} (k - m)p^m (1 - p)^{\delta - m + 1} \hat{d}_{m-1} n + \sum_{m=0}^{k-1} (k - m)p^m (1 - p)^{\delta - m + 1} \hat{d}_m n
\]
\[
= pn + \sum_{m=0}^{k-1} (k - m)p^m (1 - p)^{\delta - m + 1} \hat{d}_{m-1} + \hat{d}_m)n
\]
\[
= pn + (1 - p)^{\delta - k + 2} n \sum_{m=0}^{k-1} (k - m)p^m (1 - p)^{k-m-1} (\hat{d}_{m-1} + \hat{d}_m).
\]

Let us denote
\[
\mu = \delta - k + 2.
\]

Using the inequality \(1 - x \leq e^{-x} \), we obtain
\[
(1 - p)^{\delta - k + 2} = (1 - p)^{\mu} \leq e^{-p\mu}.
\]

Thus,
\[
E(|D|) \leq pn + e^{-p\mu} n \Theta,
\]

where
\[
\Theta = \sum_{m=0}^{k-1} (k - m)p^m (1 - p)^{k-m-1} (\hat{d}_m + \hat{d}_{m-1}). \tag{1}
\]

We will prove that
\[
\Theta \leq \hat{d}_{k-1} + \hat{d}_{k-2}.
\]

We have
\[
\Theta = \sum_{m=0}^{k-1} (k - m)(\hat{d}_m + \hat{d}_{m-1}) \sum_{i=0}^{k-m-1} (-1)^i \binom{k-m-1}{i} p^{m+i}
\]
\[
= k(\hat{d}_0 + \hat{d}_{-1}) \binom{k-1}{0} p^0 - k(\hat{d}_0 + \hat{d}_{-1}) \binom{k-1}{1} p^1 + \ldots + k(\hat{d}_0 + \hat{d}_{-1}) \binom{k-1}{k-1} (-1)^{k-1} p^{k-1}
\]
\[
+ (k - 1)(\hat{d}_1 + \hat{d}_0) \binom{k-2}{0} p^1 + \ldots + (k - 1)(\hat{d}_1 + \hat{d}_0) \binom{k-2}{k-2} (-1)^{k-2} p^{k-1}
\]
\[
\ldots
\]
\[
\ldots
\]
Let us denote

\[s_j = \sum_{i=0}^{k-j-1} (-1)^i \binom{i+j}{i} (i+j+1)(\hat{d}_{k-i-j-1} + \hat{d}_{k-i-j-2}) \]

(taking into account that \(\hat{d}_{-1} = 0 \))

\[= \sum_{i=0}^{k-j-1} (-1)^i \binom{i+j}{i} (i+j+1)\hat{d}_{k-i-j-1} + \sum_{i=0}^{k-j-2} (-1)^i \binom{i+j}{i} (i+j+1)\hat{d}_{k-i-j-2} \]

\[= \binom{j}{0} (j+1)\hat{d}_{k-j-1} + \sum_{i=1}^{k-j-1} (-1)^i \binom{i+j}{i} (i+j+1)\hat{d}_{k-i-j-1} \]

\[+ \sum_{i=1}^{k-j-1} (-1)^{i-1} \binom{i+j-1}{i-1} (i+j)\hat{d}_{k-i-j-1} \]

\[= (j+1)\hat{d}_{k-j-1} + \sum_{i=1}^{k-j-1} (-1)^i (j+1) \binom{i+j}{i} \hat{d}_{k-i-j-1} \]

\[= (j+1) \sum_{i=0}^{k-j-1} (-1)^i \binom{i+j}{i} \hat{d}_{k-i-j-1} \]

\[= (j+1) \sum_{i=0}^{k-j-1} (-1)^i \binom{i+j}{i} \sum_{l=1}^{n} \binom{d_l}{k-i-j-1} / n \]

\[= (j+1) \sum_{l=1}^{n} \sum_{i=0}^{k-j-1} (-1)^i \binom{i+j}{i} \frac{d_l}{k-i-j-1} / n \]

\[= (j+1) \sum_{l=1}^{n} \frac{d_l - j - 1}{k - j - 1} / n \] (by Lemma 3)

\[\geq 0. \]

Thus, the function \(\Theta(p) = s_0 p^{k-1} + s_1 p^{k-2} + \ldots + s_{k-1} \) is monotonically increasing in \(0 \leq p \leq 1 \).

Therefore, (1) implies

\[\Theta \leq \hat{d}_{k-1} + \hat{d}_{k-2}. \]

We obtain

\[E(|D|) \leq pn + e^{-pn}n\Theta \leq pn + e^{-pn}(\hat{d}_{k-1} + \hat{d}_{k-2}). \]

Let us denote

\[f(p) = pn + e^{-pn}(\hat{d}_{k-1} + \hat{d}_{k-2}). \]

For \(p \in [0, 1] \), the function \(f(p) \) is minimised at the point \(\min\{1, z\} \), where

\[z = \frac{\ln \mu + \ln(\hat{d}_{k-1} + \hat{d}_{k-2})}{\mu}. \]
There are two cases to consider.

If \(z \leq 1 \), then

\[
E(|D|) \leq f(z) = \left(z + \frac{1}{\mu} \right) n = \frac{\ln \mu + \ln(\hat{d}_{k-1} + \hat{d}_{k-2}) + 1}{\mu} n.
\]

Since the expected value is an average value, there exists a particular \(k \)-tuple dominating set of order at most \(f(z) \), as required.

Suppose now that \(z > 1 \). Taking into account that \(\mu > 0 \), we obtain

\[
\gamma_{\times k}(G) \leq n < \left(z + \frac{1}{\mu} \right) n = \frac{\ln \mu + \ln(\hat{d}_{k-1} + \hat{d}_{k-2}) + 1}{\mu} n,
\]

as required. The proof of Theorem 5 is complete.

For \(s \geq 1 \), let us denote

\[
T_s^t = \binom{s}{t} - \binom{s}{t-1} + \ldots + (-1)^i \binom{s}{0}.
\]

Lemma 1

\[
T_s^t = \binom{s-1}{t}.
\]

Proof: Induction on \(t \):

\[
T_s^t = \binom{s}{t} - T_s^{t-1} = \binom{s}{t} - \binom{s-1}{t-1} = \binom{s-1}{t}.
\]

Lemma 2 For \(j \geq 1 \),

\[
\binom{j-1}{0} + \binom{j}{1} + \ldots + \binom{j+i-1}{i} = \binom{j+i}{i}.
\]

Proof: Induction on \(i \):

\[
\binom{j-1}{0} + \binom{j}{1} + \ldots + \binom{j+i-1}{i} = \binom{j+i-1}{i-1} + \binom{j+i-1}{i} = \binom{j+i}{i}.
\]

Lemma 3

\[
\sum_{i=0}^{l} (-1)^i \binom{i+j}{i} \binom{r}{l-i} = \binom{r-j-1}{l}.
\]

Proof: Induction on \(j \). If \(j = 0 \), then

\[
\sum_{i=0}^{l} (-1)^i \binom{i+j}{i} \binom{r}{l-i} = \sum_{i=0}^{l} (-1)^i \binom{r}{l-i} = T_l^r = \binom{r-1}{l},
\]

as required.

Suppose that \(j \geq 1 \) and the equation of Lemma 3 is true for any \(j' \leq j-1 \). Applying Lemmas 1 and 2, we obtain:
\[
\sum_{i=0}^{l} (-1)^i \binom{i+j}{i} \binom{r}{l-i} = \sum_{i=0}^{l} (-1)^i \left(\binom{j-1}{0} + \binom{j}{1} + \cdots + \binom{j+i-1}{j} \right) \binom{r}{l-i} \\
= \left(\binom{j-1}{0} \right) \sum_{i=0}^{l} (-1)^i \binom{r}{l-i} + \left(\binom{j}{1} \sum_{i=1}^{l} (-1)^i \binom{r}{l-i} \right) + \cdots \] \\
= \left(\binom{j-1}{0} \right) T_{l}^{r} - \left(\binom{j}{1} \right) T_{l-1}^{r} + \cdots + \left(\binom{j+l-1}{l} \right) (-1)^l T_{0}^{r} \\
= \sum_{i=0}^{l} (-1)^i \binom{j+i-1}{i} T_{l-i}^{r} \\
= \sum_{i=0}^{l} (-1)^i \binom{j+i-1}{i} \binom{r-1}{l-i} \\
= \binom{r-j-1}{l} \text{.} \quad \text{(by hypothesis)}
\]

References