
We recommend you cite the published version.
The publisher’s URL is:
http://www.berlin2011.org/

Refereed: No

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.
A novel bacterial-based bioluminescent assay for the rapid pre-screening of chemotherapy efficacy

Ashley Martin, Mark Ruddock, Elizabeth Anderson, Habib Alloush, Vyv Salisbury, Priyanka Mehta, Ann Smith, Graham Smith, John Lamont
• AML is a condition affecting the adult population with a median age at presentation of 67 years. AML accounts for approximately 80% of acute leukaemia diagnosed in adults.

• Cytarabine (Ara-C) is the first line of treatment for AML even though 30-40% of patients fail to respond to initial treatment.

• Treatment with Ara-C is given without any pre-screening to determine sensitivity.

Require the development of a rapid assay for pre-screening of patient prior to Ara-C chemotherapy.
Biosensor Assay

• Development of a novel *in vitro* bioluminescent biosensor assay which is capable of identifying sensitivity or resistance to Ara-C via the formation of the active metabolite Ara-CTP

Key Features of the Assay:

• Predict individual response of a patient to Ara-C prior to treatment, singly or in combination with other agents

• Peripheral blood or bone marrow aspirates

• **Results are obtained in under 1 day**

• Tailor dosing (low, standard or high dose)

• Monitor effectiveness of treatment

• Reduce treatment times and costs

• Increase long term remission

• Increase quality of life by reducing side effects and hospital stays
The scenario...

- PB or BM sample

Patient factors (age, sex...)

- Cytogenetics
- Molecular markers

Leukaemia factors

- Sensitivity

Analyses

3 to 14 days

Functional testing

1 day

- FLAG-Ida
- DNR/Ara-C
- Clofarabine/Ara-C

- LD Ara-C
- SD Ara-C
- HD Ara-C

Treatment decision
Biosensor

How does it work?

Difference proportional to Ara-CTP in AML cell

Ara-C → Ara-CTP

Cell damage and death

Cell lysis

Ara-C + Ara-CTP

- phosphatase

+ phosphatase

Ara-CTP → Ara-C

Low Light

Biosensor

Ara-CTP → Ara-C

Biosensor

AML cell

High Light
1. Blast cells isolated from peripheral blood or bone marrow aspirates
2. Cells counted and adjusted to 2×10^6/mL
3. Cell suspension treated with:
 - Ara-C (25 µM) for 30 minutes
 - Vehicle control for 30 minutes
4. Cells are washed to remove traces of drug and lysed
5. Lysates are applied to the biosensor in the presence/absence of IPTG and Alkaline Phosphatase (AP)
6. Luminescence is recorded using a CCD camera system at the peak max ($t = 5.25$ hours)

8 hours from cell separation to result!
Biosensor tested across a range of concentrations of Ara-CTP
Results for light output following exposure to lysate spiked with Ara-CTP in the presence and absence of alkaline phosphatase (AP)
Limit of detection was 25 nM Ara-CTP (p<0.001)
Biosensor assay analysis of cell lines
Sensitive patient (remission after 1st cycle)

<table>
<thead>
<tr>
<th>Zero Control</th>
<th>Low Control</th>
<th>High Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Minus AP</td>
<td>Plus AP</td>
</tr>
<tr>
<td>Control</td>
<td>Minus AP</td>
<td>Plus AP</td>
</tr>
</tbody>
</table>

Control Sample
Ara-C Treated Sample

Resistant patient (no remission)

<table>
<thead>
<tr>
<th>Zero Control</th>
<th>Low Control</th>
<th>High Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Minus AP</td>
<td>Plus AP</td>
</tr>
<tr>
<td>Control</td>
<td>Minus AP</td>
<td>Plus AP</td>
</tr>
</tbody>
</table>

Control Sample
Ara-C Treated Sample
Biosensor assay analysis of patient samples

Sensitive patient (remission after 1st cycle)

Resistant patient (no remission)

Ara-C Sensitivity Index = 33.5%

Ara-C Sensitivity Index = 0%
<table>
<thead>
<tr>
<th>ANLL patient samples</th>
<th>Total analysed</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral blood</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bone marrow</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Complete remission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total correct</td>
<td>13/14</td>
<td></td>
</tr>
<tr>
<td>Sensitivity range (%)</td>
<td>10 to 128</td>
<td></td>
</tr>
<tr>
<td>Median (%)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Non-remission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total correct</td>
<td>18/20</td>
<td></td>
</tr>
<tr>
<td>Sensitivity range (%)</td>
<td>-9 to 7</td>
<td></td>
</tr>
<tr>
<td>Median (%)</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>
• This rapid and robust assay simply and accurately determines sensitivity to Ara-C in under 8-hours of receipt of the patient sample.

• Proof of principle analysis has shown 85% efficiency (correlation with clinical outcome and CellTiterGlo® assay) for 34 clinical samples analysed to date (p=0.052).

• Represents the first assay of this type, allowing oncologists to obtain a chemosensitivity profile of a patient prior to commencement of chemotherapy with Ara-C alone or in combination.

Current activities:

Retrospective testing in larger patient cohort in collaboration with National Cancer Research Institute (NCRI) UK.

Testing on alternative dosing regimes used in treatment of leukaemia, including daunorubicin/Ara-C, fludarabine/Ara-C and clofarabine/Ara-C.
Acknowledgments

Collaborators

- Prof Vyv Salisbury, University of the West of England, Bristol, UK
- Dr Ann Smith, Scientific Director of Stem Cell Transplant Lab, Royal Marsden, UK
- Prof Graham Smith, Consultant Haematologist, Frimley Park Hospital, UK
- Dr Priyanka Mehta, Haematology Consultant, University Hospital Bristol, UK
- Dr Habib Alloush, American University of Beirut, Lebanon
- Dr Steve Knapper, Haematology Consultant, University Hospital of Wales, UK

Funding

- Randox Laboratories Ltd, UK
- BBSRC (with Dr Phil Hill, University of Nottingham)
- UK Technology Strategy Board
- National Institute for Health Research (NIHR), UK