Novel Redox Behaviour of the 1,4-Benzodiazepine Lorazepam and Its Analytical Application

Kevin C. Honeychurch, Ai Teng Chong, Khalil Elamin and John P. Hart

1 Centre for Research in Biosciences, Health and Life Sciences, University of the West of England, Bristol, Frenchay Campus, Colston Avenue, Bristol, BS16 1XY, UK.
2 Department of Laboratory Medicine, National University Hospital, Singapore 119270, Singapore.
3Corresponding Author Tel. +44 117 3282469 Fax. +44 117 3282904, email: jph.hart@uwe.ac.uk

Introduction

Lorazepam, 7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-2H-1,4-benzodiazepin-2-one, (I) is one of the most commonly administered and abused members of the 1,4-benzodiazepine class of drugs. Previous electrochemical investigations have focused on its cathodic behaviour showing two pH dependent reduction processes resulting from the 2e, 2H reductions of the 4,5-azomethine and the 3-hydroxy groups [1,2]. However, to our knowledge there have been no reports on anodic redox behaviour of this molecule. In this present study we have identified several previously unreported oxidation processes (figure 1, O1, O2 and O3). The effects of both pH and scan direction on these were studied and mechanisms given to explain these observations. The possibility of determining lorazepam by liquid chromatography dual electrode detection in the redox mode (LC-DED) was then explored. The results showed this to be a promising approach for the determination of such drugs in serum.

Experimental

Cyclic voltammetry (CV) was performed with a Potat11 potentiostat interfaced to a PC for data acquisition via the General Purpose Electrochemical System (GPECS) version 3.4 (Autolab, Wodsworth Scientific Limited, Slough, Berks, UK). The voltammetric cell (Metrohm, Switzerland) contained a glass coated platinum wire as the working electrode, a saturated calomel electrode (SCE) (Russell, Fife, UK) and a 6 mm diameter glassy carbon electrode (GCE) as the working electrode. Cyclic voltammograms were obtained utilising a supporting electrolyte consisting of 50 % acetone containing 50 % 100 mM phosphate buffer pH 2.1; 0.8 ml/min C18, 250 x 4.6 mm, 5 µm. Generator = +2.45 V, detector = +10 V (vs. Ag/AgCl).

Results and Discussion

Typical cyclic voltammograms for lorazepam obtained in 0.1 M phosphate buffer containing 50 % acetone are shown in figure 1. Similar cathodic behaviour is seen if the scan is first performed in the negative direction (figure 1a) or positive (figure 1b) direction, with a single reduction peak (R1) being obtained. A smaller reduction wave is also observable at -0.6 V which we believe is a result of the reduction of oxygen substituted species such as aldehydes or methyl oxime present as impurities in the acetate [5,6]. Figure 1c shows the anodic section of the voltammogram of lorazepam obtained at pH 4. If the scan is first performed in the negative direction (not shown), then on the return anodic section two oxidation peaks are obtained (O1 and O3). However, without this negative scan, peak O1 is absent but O3 is present together with a new peak, O2. This indicates that O1 results from the oxidation of a compound formed during the reduction of lorazepam on the initial negative going scan. Interestingly, at pH values above 4, (figure 1d) the three oxidation peaks are still observable. Again, O1 only occurred if the cyclic voltammogram had been implemented in the negative direction first. However, O2 is now present with or without prior reduction. We believe these observed differences in the cyclic voltammetric behaviour of lorazepam must result from two different mechanisms that occur above and below pH 4.

Previous investigations [1,2] at Hg electrodes have shown that at low pH values lorazepam is reduced in a 4e, 4H process resulting from the simultaneous 2e, 2H reduction of the 4,5 azomethine bond and the 2e, 2H reduction of the 3-OH group. This possibility may be deduced from the i, versus pH plot shown in figure 1e; clearly the magnitude of the current for R1 decreases by 50 % when the pH is changed from pH 2 to pH 6. This is illustrated in scheme I. Figure 3f shows that protons are also involved in the electrodes reactions. LC-DED investigations were undertaken to exploit this behaviour. Figure 2 shows the resulting chromatograms obtained for two serum sample extracts. Clearly, in the presence of lorazepam a well-defined chromatographic peak is seen at retention time of 8.5 minutes corresponding to lorazepam. The response was found to be linear with concentration over the range 32.1 ng to 4.0 µg, with a detection limit of 15 ng on column. The percentage recovery for a serum fortified at 16 µg/ml lorazepam was found to be 77.9 %, with a corresponding %CV of 5.7 %.

Conclusions

• This is first report on the electrochemical anodic redox behaviour of lorazepam
• The underlying mechanism for the redox peaks observed by cyclic voltammetry has been investigated.
• The number and nature of the peak was found to be dependent on both pH and scan direction.
• We have utilised this behaviour for the determination of lorazepam in biological fluids by LC-DED.

References