Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase (hBCAT)

Coles, S., Hancock, J. T. and Conway, M. E. (2011) Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase (hBCAT). Acta Biochimica et Biophysica Sinica, 44 (2). pp. 172-176. ISSN 1745-7270

Full text not available from this repository

Publisher's URL: http://dx.doi.org/10.1093/abbs/gmr103

Abstract

The human branched-chain aminotransferase (hBCAT) isoenzymes are CXXC motif redox sensitive homodimers central to glutamate metabolism in the central nervous system. These proteins respond differently to oxidation by H2O2, NO, and S-glutathionylation, suggesting that the redox potential is distinct between isoenzymes. Using various reduced to oxidized glutathione ratios (GSH:GSSG) to alter the redox environment, we demonstrate that hBCATc (cytosolic) has an overall redox potential that is 30 mV lower than hBCATm (mitochondrial). Furthermore, the CXXC motif of hBCATc was estimated to be 80 mV lower, suggesting that hBCATm is more oxidizing in nature. Western blot analysis revealed close correlations between hBCAT S-glutathionylation and the redox status of the assay environment, offering the hBCAT isoenzymes as novel biomarkers for cytosolic and mitochondrial oxidative stress.

Item Type:Article
Uncontrolled Keywords:glutathione, Nernst equation, redox potential, branched-chain aminotransferase
Faculty/Department:Faculty of Health and Applied Sciences > Department of Biological, Biomedical and Analytical Sciences
ID Code:16468
Deposited By: C. Foyle
Deposited On:31 Jan 2012 10:29
Last Modified:12 Aug 2013 08:07

Request a change to this item

Copyright 2013 © UWE better together