Skip to main content

Research Repository

Advanced Search

Effect of jet inclination angle and hole exit shape on vortical flow structures in low-reynolds number jet in cross-flow

Yao, Yufeng; Maidi, Mohamad; Yao, Jun

Authors

Yufeng Yao Yufeng.Yao@uwe.ac.uk
Professor in Aerospace Engineering

Mohamad Maidi

Dr Jun Yao Jun.Yao@uwe.ac.uk
Senior Lecturer Aerospace Themofluids



Abstract

Numerical studies have been performed to visualize vortical flow structures emerged from jet cross-flow interactions. A single square jet issuing perpendicularly into a cross-flow was simulated first, followed by two additional scenarios, that is, inclined square jet at angles of 30°and 60°and round and elliptic jets at an angle of 90°, respectively. The simulation considers a jet to cross-flow velocity ratio of 2.5 and a Reynolds number of 225, based on the free-stream flow quantities and the jet exit width in case of square jet or minor axis length in case of elliptic jet. For the single square jet, the vortical flow structures simulated are in good qualitative agreement with the findings by other researchers. Further analysis reveals that the jet penetrates deeper into the cross-flow field for the normal jet, and the decrease of the jet inclination angle weakens the cross-flow entrainment in the near-wake region. For both noncircular and circular jet hole shapes, the flow field in the vicinity of the jet exit has been dominated by large-scale dynamic flow structures and it was found that the elliptic jet hole geometry has maximum lifted-off effect among three hole configurations studied. This finding is also in good qualitative agreement with existing experimental observations. © 2012 Yufeng Yao et al.

Citation

Yao, Y., Maidi, M., & Yao, J. (2012). Effect of jet inclination angle and hole exit shape on vortical flow structures in low-reynolds number jet in cross-flow. Modelling and Simulation in Engineering, 2012, 1-7. https://doi.org/10.1155/2012/632040

Journal Article Type Article
Publication Date Oct 16, 2012
Journal Modelling and Simulation in Engineering
Print ISSN 1687-5591
Electronic ISSN 1687-5605
Publisher Hindawi
Peer Reviewed Peer Reviewed
Volume 2012
Pages 1-7
DOI https://doi.org/10.1155/2012/632040
Keywords jet inclination angle, hole exit shape, vortical flow structures, low-reynolds number jet, cross-flow
Public URL https://uwe-repository.worktribe.com/output/956582
Publisher URL http://dx.doi.org/10.1155/2012/632040