On Reynolds number and scaling effects in microchannel flows

Yao, J., Yao, Y., Patel, M. K. and Mason, P. J. (2007) On Reynolds number and scaling effects in microchannel flows. The European Physical Journal - Applied Physics, 37 (2). pp. 229-235. ISSN 1286-0042

Full text not available from this repository

Publisher's URL: http://dx.doi.org/10.1051/epjap:2007010

Abstract

This paper presents a numerical study of the Reynolds number and scaling effects in microchannel flows. The configuration includes a rectangular, high-aspect ratio microchannel with heat sinks, similar to an experimental setup. Water at ambient temperature is used as a coolant fluid and the source of heating is introduced via electronic cartridges in the solids. Two channel heights, measuring 0.3 mm and 1 mm are considered at first. The Reynolds number varies in a range of 500–2200, based on the hydraulic diameter. Simulations are focused on the Reynolds number and channel height effects on the Nusselt number. It is found that the Reynolds number has noticeable influences on the local Nusselt number distributions, which are in agreement with other studies. The numerical predictions of the dimensionless temperature of the fluid agree fairly well with experimental measurements; however the dimensionless temperature of the solid does exhibit a significant discrepancy near the channel exit, similar to those reported by other researchers. The present study demonstrates that there is a significant scaling effect at small channel height, typically ≤0.3 mm, in agreement with experimental observations. This scaling effect has been confirmed by three additional simulations being carried out at channel heights of 0.24 mm, 0.14 mm and 0.1 mm, respectively. A correlation between the channel height and the normalized Nusselt number is thus proposed, which agrees well with results presented.

Item Type:Article
Uncontrolled Keywords:Reynolds number, scaling, microchannel, flows
Faculty/Department:Faculty of Environment and Technology
ID Code:17713
Deposited By: A. Clarke
Deposited On:16 Oct 2012 14:34
Last Modified:07 Oct 2013 15:23

Request a change to this item

Copyright 2013 © UWE better together