Some effects of nitrogen nutrition on caesium uptake and translocation by species in the Poaceae, Asteraceae and Caryophyllidae

N. Willey a, *, S. Tang b

a Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
b College of Environmental Science and Engineering, Guangzhou University, Jie Fang Road, Guangdong Province, Guangzhou 510405, PR China

Received 7 December 2004; accepted 4 July 2005

Abstract

There is current interest in managing and manipulating 137Cs transfer from soil to plants. We hypothesized that N source might affect Cs uptake by plants and report experiments that confirm this. Uptake experiments using hydroponics with a variety of species in the Poaceae, Asteraceae and Caryophyllid clade grown in a variety of N regimes with excess N and then acutely exposed to Cs showed that N nutrition could affect Cs uptake rates, total amounts of Cs taken up and root:shoot ratios of Cs. In general, the Caryophyllids tested produced significantly less shoot and root biomass but had higher Cs uptake rates when grown on NH4+ rather than NO3−, whilst species from the Poaceae and Asteraceae almost always produced similar shoot and root biomass and had similar Cs uptake on NH4+, NO3− or glycine as N sources. This is the first time that plants grown on an organic-N source have been demonstrated to take up Cs. Physiological experiments using N-starvation and the N-metabolism inhibitor methionine sulfoxamine (MSX) demonstrated that Cs transport into the root was inversely related to NH4+ transport, i.e. NH4+-grown plants had higher Cs uptake rates if there is no NH4+ present during uptake but lower Cs uptake rates if NH4+ is present. It is suggested that taking account of N ecophysiology might help refine predictions of soil-to-plant transfer of 137Cs and, in some instances, be useful for managing or manipulating it. It is noted that there is much recent research into N nutrition in plants that might be useful in achieving this.

© 2005 Elsevier B.V. All rights reserved.

Keywords: 137Cs uptake; 137Cs translocation; N-nutrition; Plant species; Radioecology

1. Introduction

Research into 137Cs transfer from soils to plants has recently begun to expand from making predictions of plant 137Cs concentrations to managing and manipulating them. For example, in most soils contaminated with 137Cs it is now clear that it will persist in the rooting zone for many years (Smith et al., 2000), necessitating amelioration strategies based on managing 137Cs transfer from soils to plants (White et al., 2003). Further, because there are currently no economically viable methods to clean up all 137Cs-contaminated soils, and enhanced plant uptake of other contaminants from soils is showing potential as a decontamination method (e.g. Huang et al., 1998; Ma et al., 2001), ‘phytoextraction’ has been investigated for soils contaminated with 137Cs (Lasat et al., 1997; Dushenkov et al., 1999; Fuhrmann et al., 2003; Willey et al., 2001). These trials have shown that manipulations to enhance soil-to-plant transfer are needed if phytoextraction is to be useful for 137Cs.

Minotti et al. (1965) and Jackson et al. (1968) reported that NH4+-grown wheat seedlings had significantly higher Cs uptake than NO3−-grown ones, and the experiments of Shaw and Bell (1991) showed that NH4+ and Cs could compete during uptake by wheat. Given that NH4+ concentrations in soils can vary by several orders of magnitude (Glass et al., 2002), such results indicate that soil NH4+ concentrations might affect Cs transfer from soil to plants. Evans and Dekker (1969) provided the first field test of this phenomenon and showed that additions of NH4+ to soil significantly increased 137Cs uptake by oat plants. Similar results have recently been reported with 137Cs uptake by rye grass (Paasikillio...
and Sormunen-Cristian, 2002). Significant NH4+−induced increases in Cs uptake have, therefore, all been reported in plants in the family Poaceae (Wheat, Oats and Rye). Experiments at Brookhaven National Laboratory (Lasat et al., 1997; Lasat et al., 1998; Fuhrmann et al., 2002; Fuhrmann et al., 2003) and near Chernobyl (Dushenkov et al., 1999) have shown that NH4+ additions can increase 137Cs desorption from soils by an order of magnitude in the laboratory but that additions of NH4+ to soil in the field did not increase 137Cs transfer to plants, almost all of which were in the families Chenopodiaceae or Amaranthaceae on the Caryophyllid clade.

Molecular biological investigations have transformed the understanding of plant N-nutrition (Glass et al., 2002). It is now thought that up to seven transport proteins in the AMT1 family are responsible for NH4+−uptake and transport in plants (Glass et al., 2002), although with the exception of AMT1.1, their Cs transport capacity is unknown. Their expression is dependent on N source, plant N status, plant species and plant organ. AMT1.1 has some Cs transport activity (Ninneman et al., 1994), and given that NH4+ and Cs+ have a very similar hydrated size, which causes them to interact during adsorption to soil, interactions between NH4+ and Cs transport seem possible. The uptake of NO3− by plants is primarily regulated by NRT2 proteins (Glass et al., 2002), which seem unlikely to be able to transport Cs, but the presence of NO3− −up-regulates expression of NO3− transporters and down-regulates expression of NH4+ transporters, probably via feedback based on cytosolic glutamine concentrations (Crawford and Glass, 1998). Interestingly, it has also become clear in the last decade that many plants can use organic forms of soil nitrogen, such as glycine, in significant quantities (Lipson and Nasholm, 2001), including both plant species that grow in 137Cs contaminated agricultural (Nasholm et al., 2000) and natural ecosystems (Persson and Nasholm, 2001). Uptake of organic N also affects NH4+ uptake via feedback through cytosolic glutamine concentrations (Glass et al., 2002). The genes and proteins that control numerous aspects of N uptake and metabolism in the model plant Arabidopsis thaliana are rapidly being identified (Crawford and Forde, 2002). Overall, such studies are emphasising the central role of N uptake and metabolism in whole-plant physiology and ion uptake (Crawford et al., 2000). Given that such research is opening up the possibility of genetically engineering plant N uptake, with consequent effects on ion uptake, it seems an appropriate moment to reinvestigate the effects of N nutrition on Cs uptake by plants.

It is now known that plants in the Poaceae, such as the wheat used by Minotti et al. (1965), Jackson et al. (1968), and Shaw and Bell (1991) have, on average, much lower Cs uptake than those on the Caryophyllid clade in such families as the Chenopodiaceae, Amaranthaceae and Polygonaceae (Broadley and Willey, 1997; Broadley et al., 1999a,b; Tang et al., 2003). Species in the Asteraceae have also been noted to have high uptake of Cs (Tang and Willey, 2003; Willey et al., 2005). Such inter-taxon differences suggest that efforts to minimise soil-to-plant transfer of Cs might best focus on species in the Poaceae, whilst efforts to maximise transfer might focus on members of the Caryophyllid clade and the Asteraceae. Significantly, it also appears that there might be some phylogenetic constraints on the sources of nitrogen that plants can utilise, with the Poaceae often reported as preferring a mixed NO3−/NH4+ source, although a wide phylogenetic perspective on plant N preferences has not yet been reported (Glass et al., 2002). Here, using hydroponic systems in which soil interactions have been eliminated, we report five separate experiments that used plants in the Poaceae, Asteraceae and Caryophyllaceae to investigate different aspects of plant N-nutrition affects on Cs uptake. One objective was to clarify the apparently contradictory effect of NH4+ nutrition on Cs uptake in plants in the Poaceae and Caryophyllaceae but our overall aim was to investigate the effects of the N-nutrition of plants on Cs uptake.

2. Methods

In experiments in Sections 2.1–2.3 plants were grown hydroponically in large volumes of different Cs-free N-sources that provided excess readily available nutrients and then given an acute exposure to Cs by immersing their roots in small volumes of solutions containing just radiolabeled Cs and physiological saline (CaSO4). This eliminated the effects of soil factors and nutrient deficiencies on Cs uptake, prevented interactions (either long-term or short-term) between Cs uptake and nutrient uptake, and gave approximately instant insights into the effects on Cs uptake by minimising the effects of homeostatic mechanisms and other feedback effects during radiolabelling. Protocols of this type were chosen in an attempt to dissect physiological effects of N-source rather than to simulate field conditions. In experiments in Sections 2.1–2.3 there was no significant depletion of radiocaesium during radiolabelling and, because a stable Cs carrier was used, no detectable radio-caesium adsorbed to flasks or tubes.

2.1. Nitrogen source and 137Cs activities in plant shoots

The objective of this experiment was to test the effects of the full range of N-sources that plants are now known to utilise on Cs uptake to shoots using plant species known to have contrasting Cs uptake behaviours. Seeds of Hordeum vulgare, Amaranthus cruentus, Chenopodium album, Carthamus tinctorius and Zinia elegans were surface sterilised by soaking in 1% NaOCl for 10 min then 5% H2O2 for 1 min, rinsed in deionised water, and germinated in heat-treated, inert vermiculite in 36 gauge-bottomed tubs of each species for hydroponic culture. Nine replicates of each species were cultured in four Hoagland’s solutions modified to contain four different N sources: zero N, Ca(NO3)2, glycine and NH4Cl. The three N solutions each contained 0.715 mM N. Each growth solution had a volume of 40 L, had pH adjusted...
to 5.5, contained 10 ppm ampicillin, was continually aerated, changed every two days and located in a greenhouse with 16 h/8 h day/night at ca. 22 °C/18 °C with supplementary lighting to ca. 350 μmol m⁻² s⁻¹. Each solution was located in a 40 L compartment of a master tank. At each solution change the compartmental distribution of growth solutions was rotated, and solution samples taken for analysis of NO₃⁻ using NitraVer 5 (Hach Co., USA), analysis of NH₄⁺ using Nessler’s solution (Fisher Scientific, UK), and for counts of nitrifying bacteria. After 21 days all plants were transferred to a nuclear laboratory for radiolabeling where each tub of plants was seated for 1 h into the neck of a 275 mL conical flask containing 0.25 mM CaSO₄ to bathe the roots in physiological saline and acclimatise the plants to radiolabeling conditions, as has been found useful in previous experiments of this type (Broadley et al., 1999a,b). Tubs were then transferred to a 275 mL conical flask containing 10 μM CsCl radiolabeled with 185 kBq ¹³⁷Cs L⁻¹ plus 0.25 mM CaSO₄. A randomised block design was used to position the flasks in an arena provided with ca. 350 μmol m⁻² s⁻¹ supplementary lighting. Plants were harvested after 24 h (a period that handheld monitors indicated had produced easily detectable ¹³⁷Cs activities in plants), dried at 80 °C for 48 h and shoots analysed for ¹³⁷Cs γ-emissions on an LKB Wallac Compugamma 1282 (Nal(Tl) detector with 81% efficiency) using appropriate calibration and blanks. Shoot weights, shoot ¹³⁷Cs activity concentrations and total Cs uptake to shoot were analysed statistically using two-way ANOVA on SigmaStat 3 for Windows with N regime and species as factors, and the Holm–Sidak procedure for all pairwise comparisons.

2.2. N source and root:shoot ¹³⁷Cs activities in plants

Sixteen tubs each of Lolium perenne L. var S23 and Beta vulgaris L. var flavescens were grown in the greenhouse conditions and in the hydroponic system used for experiment in Section 2.1 above. Eight replicate tubs of each species were grown in a 40 L compartment containing either nitrate or ammonium-based nutrient solutions using the improved hydroponic solutions of Padgett and Leonard (1993) plus the nitrification inhibitor dicyandiamide (DCD) at 20 mg L⁻¹ (Prasad and Power, 1995). Both solutions contained 10 mM N. The solutions in each tank were aerated and changed weekly, and at each change NO₃⁻ and NH₄⁺ concentrations were measured as for experiment in Section 2.1. After 28 days all plants were radiolabeled as in experiment in Section 2.1 but for 45 min (an exposure time that it was predicted would produce ¹³⁷Cs activities that would be easily detectable in the γ-counter), after which time they were transferred to solutions with 5 mM CsCl at 4 °C for 30 min. After roots had been immersed in it this cold stable Cs solution contained detectable ¹³⁷Cs desorbed from plant roots. The roots and shoots of all plants were then harvested, weighed fresh, and then dried, weighed and counted for ¹³⁷Cs γ-emissions as in experiment in Section 2.1. The weights and ¹³⁷Cs activity concentrations of both roots and shoots, and ¹³⁷Cs uptake rates g⁻¹ root were statistically analysed using two-way ANOVA as above with N regime and species as factors.

2.3. N source, Cs uptake and Cs distribution in Caryophyllids

Nine tubs of eight species (C. album, Chenopodium bonus-henricus, A. cruentus, Amaranthus giganteus, Polygonum fagopyrum, Rheum rhaponticum, Chenopodium mexicanum, and Rheum tataricum) were grown in the conditions outlined for experiment in Section 2.2 in either the nitrate or ammonium solutions plus the nitrification inhibitor DCD at 20 mg L⁻¹ (Prasad and Power, 1995). After 42 days, all plants were radiolabeled as in experiment in Section 2.2. The roots, stems and leaves of all plants were harvested, weighed fresh, and counted fresh for ¹³⁷Cs γ-emissions as in experiments in Sections 2.1 and 2.2 above. Root, stem and leaf weights and ¹³⁷Cs activity concentrations were statistically analysed using two-way ANOVA as above with N regime and species as factors.

2.4. NH₄⁺-starvation and Cs uptake by plants

L. perenne var S23 was grown for 47 days in the greenhouse as above but with average day/night at 24 °C/20 °C, in 68 gauze-bottomed plastic tubs suspended into 2 × 50 L tanks of the following NH₄⁺-N solution—0.5 mM (NH₄)₂SO₄, 1.0 mM KCl, 0.5 mM CaCl₂, 0.15 mM MgSO₄, 0.1 mM KH₂PO₄ plus FeDTA and micronutrients which was circulated every 20 min and aerated continually. Solution pH was constantly adjusted to 6.5 by the controlled addition of 0.5 mM NH₃ triggered by a peristaltic pump linked to a pH probe and threshold activator. The solutions were replaced approximately weekly throughout the growth period. On Day 43, the solution in tank 1 was changed to an N-free solution in which (NH₄)₂SO₄ was replaced by CaSO₄, whilst tank 2 (controls) were refreshed with the NH₄⁺-N solution. In tank 1, pH adjustment ceased on Day 43 and pH remained at 6.5 until the end of the experiment on Day 47. On Days 44, 45 and 47 (i.e. after 1, 2 and 4 days NH₄⁺-starvation in tank 1) nine randomly selected tubs were removed from both tanks. Three of the tubs from tank 1 (N-starved) and three from tank 2 (N sufficient control) were immersed in each of three aerated treatment solutions. Each treatment solution had 10 μM CsCl and the nutrient solution buffered to 6.5 with TRIS-MES but with 0 μM (treatment 1), 30 μM (treatment 2) or 500 μM (NH₄)₂SO₄ (treatment 3). CsCl was labelled with 1110 kBq ¹³⁷Cs L⁻¹ and (NH₄)₂SO₄ was 30% ¹⁵N. Tubs of plants in treatments 1 and 3 were placed individually in 275 mL conical flasks containing 275 mL of treatment solution but those of treatment 2 were placed together in a single 5 L beaker containing 3 L of treatment solution. After 2 h in treatment solutions, plants were transferred to fresh NH₄⁺-nutrient solution for 30 min. Plants were then harvested, freeze-dried and homogenised. Samples (100 mg) of all root and shoot material was digested in 2 mL HNO₃ at
170 °C until NO₂ production ceased. 0.66 mL HClO₄ (60%) was then added and the samples refluxed at 230 °C until clear. Samples were analysed for ¹³⁴Cs β-emissions with appropriate blanks and background corrections and for ¹⁵N by mass spectrometry. NH₄⁺ and ¹³⁴Cs uptake rates were statistically analysed using two-way ANOVA as above with N starvation and time as factors.

2.5. Inhibition of NH₄⁺ assimilation and Cs uptake by plants

L. perenne var S23 was grown in four tubs in each of 18 beakers for 36 days in 600 mL of NH₄⁻-N nutrient solution (as used in experiment in Section 2.4). The solution was changed every 5 days and contained 1.5 mM NH₄⁺. Beakers were placed in a growth room 16 h/8 h day/night at ca. 25 °C/20 °C with supplementary lighting to ca. 300 μmol m⁻² s⁻¹. On Day 36, the solution in nine beakers was changed to a solution containing 0.4 mM methionine sulfoximine (MSX) and then 1 h later one containing 0.4 mM MSX, 0.05 mM NH₄⁺ and 4 μM Cs. The other nine were treated identically except that MSX was not added. Samples of all treatment solutions were taken before root immersion and then after 1, 3, 6 and 10 h. NH₄⁺ was measured by ion chromatography and ¹³³Cs by electrothermal atomic absorption spectrophotometry (AAS). One plant from each beaker was harvested after 1, 3, 6 and 10 h and analysed for ¹³³Cs by AAS. NH₄⁺ and ¹³³Cs in treatment solutions were statistically analysed using two-way ANOVA as above with MSX regime and time as factors.

3. Results

In the nutrient solutions of experiment in Section 2.1 there was no detectable change in nitrogen form or concentration in the N-free, NO₃⁻ or NH₄⁺ solutions at any time and nitrifying bacteria were undetectable. This indicates that the plants were subjected to excess N from different sources. Fig. 1A shows that of the plant species in experiment in Section 2.1, the Caryophyllids (*A. cruentus, C. album*) grew well only on nitrate solution but that *H. vulgare* from the Poaceae and *Carthamus tinctorius* and *Z. elegans* (Asteraceae) produced, at *P* = 0.05, statistically indistinguishable amounts of biomass on either NO₃⁻-, glycine or NH₄⁺-based solutions. There were significant effects of N-source (*F* = 7.857, *P* < 0.01), and species (*F* = 13.588, *P* < 0.01) on ¹³⁷Cs concentrations in shoots and a significant interaction between the two (*F* = 4.96, *P* < 0.01). For the factor N-source there were numerous significant pairwise comparisons in ¹³⁷Cs concentration, with the concentration of ¹³⁷Cs in NO₃⁻-grown *A. cruentus* and *C. album* being significantly greater than that in NO₃⁻-grown plants of *H. vulgare* and *C. tinctorius*, and greater than that of all *L. perenne* and NH₄⁺-, glycine- and control-grown *Z. elegans* (Fig. 1B). All three N-sources produced uptake significantly different to the controls in at least one species (Fig. 1B). Overall, the greatest total amount of ¹³⁷Cs was removed by *C. album* grown on nitrate. *H. vulgare*, *C. tinctorius* and *Z. elegans* grown on any of the N sources removed, at *P* = 0.05, statistically indistinguishable total amounts of ¹³⁷Cs (Fig. 1C).

In NO₃⁻ and NH₄⁺ nutrient solutions in experiment in Section 2.2 the maximum detectable NO₃⁻ concentration in NH₄⁺ solutions was 4 mg L⁻¹ (0.015 mM N) and the minimum NH₄⁺ 32 mg L⁻¹ (1.4 mM N), whilst in NO₃⁻ solutions the maximum NH₄⁺ was 3 mg L⁻¹ (0.131 mM N) and the minimum NO₃⁻ 28 mg L⁻¹ (0.105 mM N). *L. perenne* plants grown on either NO₃⁻ or NH₄⁺ as an N source did not produce significantly different biomass totals but NH₄⁺-grown plants had significantly greater shoot:root ratios (*P* < 0.05;
Fig. 2. Biomass dry weight (A) and 137Cs concentrations (B) of roots and shoots, and 137Cs uptake rates g$^{-1}$ root (C) by *L. perenne* and *B. vulgaris* grown for 28 days in hydroponics with nitrate and ammonium solutions based on Padgett and Leonard (1993) at 10 mM N. (Means ± S.E., n = 8).

B. vulgaris plants produced significantly greater biomass in NO$_3^-$ solutions ($P = 0.006$; Fig. 2A). The Cs concentration in roots and shoots of *L. perenne* were not significantly different between NO$_3^-$ and NH$_4^+$-grown plants (Fig. 2B) and the total amount of Cs they accumulated was not therefore different, but due to the differences in shoot: root biomass ratios, NH$_4^+$-grown plants accumulated significantly more Cs in total in their shoots than NO$_3^-$-grown plants (not shown, $P = 0.014$). Cs concentrations in the roots and shoots of NH$_4^+$-grown *B. vulgaris* were significantly greater than NO$_3^-$-grown plants ($P = 0.014$ and 0.011, respectively; Fig. 2B) but they accumulated significantly less Cs in total than NO$_3^-$-grown plants (not shown, $P = 0.05$). In both *L. perenne* and *B. vulgaris*, NH$_4^+$-grown plants had significantly greater uptake rates g$^{-1}$ root and, after growth in either NO$_3^-$ or NH$_4^+$, *B. vulgaris* had a greater Cs uptake rate than *L. perenne* (Fig. 2C). Root concentrations, however, need to be interpreted in the knowledge that not all Cs will have been internalised. The root wash in cold 5 mM CsCl will have removed much 137Cs from the outside of the

Fig. 3. Fresh weights (A) and 137Cs concentrations (B) in eight Caryophyllid species grown for 42 days in nitrate and ammonium solutions based on Padgett and Leonard (1993) at 10 mM N (1, *C. album*; 2, *C. bonus-henricus*; 3, *A. cruentus*; 4, *A. giganteum*; 5, *P. fagopyrum*; 6, *R. rhaponticum*; 7, *C. mexicanum*; 8, *R. tataricum*). (Means ± S.E., n = 9. Above axis unshaded bar, stem; shaded bar, leaf. Below axis shaded bar, root. White bars, NO$_3^-$-grown, grey bars, NH$_4^+$-grown).
root by swamping ion exchange sites with 133Cs whilst slowing physiological transfers in the root, but complete removal of 137Cs from the complex apoplastic cell wall matrix surrounding root cells is difficult to demonstrate and was not attempted.

Fig. 3A shows that there were significant differences in biomass production between plant taxa on the Caryophyllid clade and that all the species in experiment in Section 2.3 produced more biomass and smaller root:shoot ratios when grown on nitrate solutions ($P<0.05$). In four out of eight species there were significantly higher concentrations of Cs in roots, stems and/or leaves in NH$_4^+$-grown plants ($P<0.05$; Fig. 3B) and significantly greater shoot:root ratios (see Fig. 3B). Cs concentrations were higher in roots than in shoots in all species but, with the exception of nitrate grown C. album, there were no significant differences in Cs concentrations between leaves and stems in any of the species (Fig. 3B). In seven out of eight species the total amount of Cs removed to shoots by NH$_4^+$-grown plants was greater than by NO$_3^-$-grown plants (C. album, 395 Bq/352 Bq NH$_4^+$/NO$_3^-$ ($n=9$, $P<0.05$); C. bonus-henricus, 121 Bq/80 Bq ($n=9$, $P<0.05$); A. cruentus, 824 Bq/239 Bq ($n=9$, $P<0.05$); A. giganteum, 234 Bq/40 Bq ($n=9$, $P<0.05$); P. fagopyron, 69 Bq/44 Bq; R. rhaponticum, 149 Bq/50 Bq ($n=9$, $P<0.05$); C. mexicanum, 177 Bq/186 Bq; R. tartaricum, 54 Bq/23 Bq ($n=9$, $P<0.05$)).

L. perenne plants that have been starved of NH$_4^+$ for 1, 2 or 4 days have increased uptake of NH$_4^+$ from 500 µM solutions (Fig. 4B) but not from 30 µM solutions (Fig. 4A). The uptake rate of NH$_4^+$ by NH$_4^+$-grown plants from 30 µM (Fig. 4A) and 500 µM (Fig. 4B) solutions was statistically indistinguishable. The 134Cs uptake rates of NH$_4^+$-grown L. perenne plants in treatment solutions with 0, 30, 500 µM N were statistically indistinguishable (Fig. 4C–E). 134Cs uptake rates by NH$_4^+$-starved L. perenne plants in 0, 30, 500 µM N were statistically indistinguishable from each other and from uptake by any NH$_4^+$-grown plants but 134Cs uptake by NH$_4^+$-grown plants from 500 µM treatment solution was significantly lower than for any other plants ($P<0.05$: Fig. 4E). Uptake rates of 134Cs and NH$_4^+$ were lower on Day 1 than on Days 2 and 4, but this effect was only statistically significant for NH$_4^+$-grown plants treated with 500 µM solution. L. perenne plants treated with MSX removed significantly less NH$_4^+$ from solution than did untreated plants (Fig. 5A). Cs concentrations in solutions with plants treated with MSX were significantly less than those with untreated plants (Fig. 5B).
that it had higher uptake of 137Cs when grown on NH$_4^+$ rather than NO$_3^-$ (Fig. 1). It is only relatively recently that it has become clear that many plants are capable of utilising simple organic sources of nitrogen, such as amino acids (Persson and Nasholm, 2001). It now seems, however, that there are probably a significant number of plants in soils with organic rooting zones, such as the podsols and histosols widely contaminated with 137Cs after the Chernobyl accident and by weapons test fall-out at high latitude, respectively, that use amino acids extensively. The Poaceae is a large family of plants (ca. 10,000 species), with important members in many 137Cs contaminated environments, that is often perceived as flexible in its utilisation of different nitrogen sources.

1. Introduction

The 137Cs contaminated environments, that is often perceived as flexible in its utilisation of different nitrogen sources.

2. Methods

The Caryophyllid clade is distinguished by a number of morphological, genetic and physiological traits. Experiments in Sections 2.1–2.3 included 11 different taxa on the Caryophyllid clade, all of them closely related, and they all produced more biomass when grown on NO$_3^-$ than NH$_4^+$ nutrition reduced Caryophyllid biomass production, it increased the Cs uptake rate g$^{-1}$ root (Fig. 2C) and in some instances Cs concentration (Fig. 3B). These results indicate that, in attempts to maximise 137Cs extraction from soil, it might be interesting to investigate the effects of N nutrition on 137Cs uptake in Caryophyllids that prefer NH$_4^+$ as a nutrient source. In experiment in Section 2.3 we were expecting some species to prefer NH$_4^+$ but perhaps Caryophyllid taxa that live in cold or waterlogged environments where NH$_4^+$ dominates (Armstrong et al., 1994) need to be specifically targeted.

Experiments in Sections 2.1–2.3, used species in the Poaceae (which are numerous in many 137Cs contaminated environments and provide all cereal crops), and the Caryophyllidae and Asteraceae (which have previously been reported to have high Cs uptake and have been investigated for phytoremediation, e.g. Dushenkov et al., 1999; Willey et al., 2001; Tang et al., 2003). The results show, for some taxa for the first time, that the uptake rate and total Cs removal by these radioecologically important plant groups can, at least in hydroponics, be affected by N nutrition. In those instances in which it is unaffected, e.g. H. vulgare, the results demonstrate that 137Cs uptake occurs under a wider range of N sources than has previously been investigated. N uptake and metabolism has widespread affects on the physiology of different hydroponic and treatment conditions used, both in the experiments reported here and in previous experiments, the details of the phenomenon remain obscure.

Interestingly, when H. vulgare was grown with glycine as its sole nitrogen source (Fig. 1), it had biomass production and 137Cs uptake that was indistinguishable to those of NO$_3^-$ or NH$_4^+$-grown plants. It is only relatively recently that it has become clear that many plants are capable of utilising simple organic sources of nitrogen, such as amino acids (Persson and Nasholm, 2001). It now seems, however, that there are probably a significant number of plants in soils with organic rooting zones, such as the podsols and histosols widely contaminated with 137Cs after the Chernobyl accident and by weapons test fall-out at high latitude, respectively, that use amino acids extensively. The Poaceae is a large family of plants (ca. 10,000 species), with important members in many 137Cs contaminated environments, that is often perceived as flexible in its utilisation of different nitrogen sources.

The Caryophyllid clade is distinguished by a number of morphological, genetic and physiological traits. Experiments in Sections 2.1–2.3 included 11 different taxa on the Caryophyllid clade, all of them closely related, and they all produced more biomass when grown on NO$_3^-$ than NH$_4^+$ nutrition reduced Caryophyllid biomass production, it increased the Cs uptake rate g$^{-1}$ root (Fig. 2C) and in some instances Cs concentration (Fig. 3B). These results indicate that, in attempts to maximise 137Cs extraction from soil, it might be interesting to investigate the effects of N nutrition on 137Cs uptake in Caryophyllids that prefer NH$_4^+$ as a nutrient source. In experiment in Section 2.3 we were expecting some species to prefer NH$_4^+$ but perhaps Caryophyllid taxa that live in cold or waterlogged environments where NH$_4^+$ dominates (Armstrong et al., 1994) need to be specifically targeted.

Experiments in Sections 2.1–2.3, used species in the Poaceae (which are numerous in many 137Cs contaminated environments and provide all cereal crops), and the Caryophyllidae and Asteraceae (which have previously been reported to have high Cs uptake and have been investigated for phytoremediation, e.g. Dushenkov et al., 1999; Willey et al., 2001; Tang et al., 2003). The results show, for some taxa for the first time, that the uptake rate and total Cs removal by these radioecologically important plant groups can, at least in hydroponics, be affected by N nutrition. In those instances in which it is unaffected, e.g. H. vulgare, the results demonstrate that 137Cs uptake occurs under a wider range of N sources than has previously been investigated. N uptake and metabolism has widespread affects on the physiology of
plants (Crawford et al., 2000), so it is perhaps unsurprising that N nutrition can affect Cs uptake. It is notable that in some instances the changes in Cs concentrations in plant parts are at least double (e.g. *C. album*, *C. bonus-henricus* and *A. cruentus* in Fig. 3B). So, although with none of the N forms was Cs uptake eliminated or hyperaccumulation induced, there were some quite significant changes in Cs activity concentrations and totals accumulated.

Since previous experiments on the effects of nitrogen regime on 137Cs uptake it has become clear that plants have specific NH$_4^+$ transport proteins that are expressed in roots primarily in the presence of NH$_4^+$. In general, nutrient starvation leads to short-term increases in the expression of transport proteins. This phenomenon has provided the route to identifying many nutrient transporters because transporter-specific mRNA can be isolated from root cells during this transient period of increased gene expression. Fig. 4B certainly confirms that NH$_4^+$-grown *L. perenne* plants starved of NH$_4^+$ for 1, 2 or 4 days have increased NH$_4^+$ uptake rates from solutions with approximately soil solution concentrations of 500 μM NH$_4^+$. Although it is possible that the same transporters are taking up NH$_4^+$ more quickly than in non-starved plants, the increases in uptake are most likely to have occurred because of increased expression of NH$_4^+$ transport proteins in the roots, as has been observed with many other nutrient ions. 134Cs uptake from either 0 or 30 μM solutions was unaffected by NH$_4^+$ starvation but, interestingly, NH$_4^+$-starvation decreased 134Cs uptake from 500 μM solutions, i.e. in instances where actual NH$_4^+$ uptake was increased, 134Cs uptake decreased. It is, perhaps, notable that the phenomenon of NH$_4^+$-grown plants having increased Cs uptake might only apply from solutions in which NH$_4^+$ is absent, as it was in all treatment solutions, including those used here in experiments in Sections 2.1–2.3, from which increased Cs uptake by NH$_4^+$-grown plants has been reported. Fig. 5 confirms this inverse relationship—decreases in NH$_4^+$ uptake induced by exposure to MSX increased 134Cs uptake. MSX decreases the assimilation of NH$_3$ plants (Fentem et al., 1983a), increasing cytoplasmic NH$_4^+$ concentrations and decreasing NH$_4^+$ uptake rates (Fentem et al., 1983b; Britto et al., 2001). Only a molecular biological dissection of this phenomenon could describe its mechanism but NH$_4^+$ uptake can certainly affect Cs uptake. The results in Figs. 4 and 5 are consistent with a link between NH$_4^+$ and Cs uptake that is more complex than competition for ion transport sites, and perhaps involves both influx and efflux. Usefully, a number of *A. thaliana* N transport mutants exist that might provide enlightening results if fed with Cs (Kaiser et al., 2002).

The results reported here indicate plant N ecophysiology might affect Cs transfer from soils to plants. There has been much recent progress in understanding the pedological controls on N forms in soils, primarily driven by concern about emissions of nitrogenous greenhouse gases, and manipulations of soil N forms is becoming increasingly refined (Zerulle et al., 2001). The results reported here indicate that this knowledge might be useful in understanding, managing and manipulating Cs transfer from soils to plants. Overall, however, given the central importance of N nutrition to whole plant physiology, its effects on Cs uptake by plants, though statistically significant, seem most likely to be radioecologically important in soil–plant systems of contrasting N-ecophysiology. Given that some variability in soil-to-plant transfer might be caused by differences in N nutrition, researchers interested in managing soil-to-plant transfer of 137Cs to minimise ecosystem contamination or manipulating uptake rates for phytoremediation, might consider links between soil N form and plant uptake of 137Cs. For example, given current knowledge, we hypothesise that plants on the Caryophyllid clade with a preference for NH$_4^+$ as an N source will have the highest 137Cs uptake of any plants. Much recent research into N in the soil–plant system, including the availability of plant N transport mutants, the variety of mechanisms for manipulating soil N forms, and the existence of metabolic inhibitors of N-metabolism might aid the testing of such hypotheses and hence the management and manipulation of Cs transfer from soils to plants.

Acknowledgement

We would like to thank Judy Brown, Nicky Florence and Julian Glowacki for technical assistance with experiments.

References

