The investigation of the hBCAT proteins in control and
diseased human brains: Implications for glutamate toxicity
in Alzheimer’s disease

Jonathon Walter Hull

Department of Biological, Biomedical and Analytical Sciences, University of the
West of England, Bristol

2014

A thesis submitted in partial fulfilment of the requirements of the University of
the West of England, Bristol for the degree of Doctor of Philosophy

This work was funded by BRACE (Bristol Research into Alzheimer’s and Care
of the Elderly) and carried out in collaboration with the South West Dementia
Brain Bank (SWDBB)
This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
Acknowledgments

My deepest gratitude goes to Myra Conway (director of studies) for an amazing amount of support, understanding, patience and intelligence. I could never have done this without her (although I’m sure she knows that). I would also like to thank the people of BRACE (Bristol Research into Alzheimer’s and Care of the Elderly) for the funding of this PhD – I hope they find it a worthwhile investment.

At the South West Dementia Brain Bank I would like to thank Katy Chalmers (second supervisor), Seth Love, Patrick Kehoe and Scot Miners. I would also like to make a note of thanking the families of those who donated their brain for dementia research – their contribution to science should not be overlooked.

At the University of the West of England I would like to thank Carolyn Paul (second supervisor), along with Katy Hayward, Mohammed Hezwani, Maya El Hindy, David Corry, Oester Odele, Patsy Adamo, Alison Haliday, Man-Kim Cheung, Mathew Harris, Vinood Patel and many more that I’ve almost certainly forgotten.

I’d finally like to sincerely thank my family for their continued support, and hope they don’t find my thesis too boring.
The investigation of the hBCAT proteins in control and diseased human brains: Implications for glutamate toxicity in Alzheimer’s disease

Abstract

Introduction & Aims: The distribution of the BCAT proteins has been extensively mapped in rodent models, and metabolic studies have established that BCAT transamination in the rodent brain is responsible for 30% of de novo glutamate synthesis. However, to date the BCAT proteins have not been mapped to the human brain and their role in pathogenic conditions where glutamate toxicity features has not been investigated. To this end, this study aimed to map the hBCAT proteins to several brain regions. Furthermore, the expression of hBCAT in AD relative to matched controls was investigated and correlated with both physiological and pathological features of AD. Finally, metabolic and inflammatory stimuli were examined for their effect on neuronal expression of hBCATc.

Methods: Distribution of the hBCAT proteins were assessed utilising immunohistochemistry and imaged utilising a 12-bit camera mounted on a Leica DM microscope. Western blot analysis and microscopy determined the expressional difference in AD compared to age and gender matched controls in addition to cell types responsible for the increased expression. Further investigation of neuronal hBCATc expression was examined in the immortal cell line IMR32 utilising Western blot analysis, phase contrast microscopy, flow cytometry and 14C radiolabelled activity assay.

Results & Discussion: For the first time this work demonstrates key differences between the animal model of BCAA metabolism and humans. All brain regions contained cell types labelled for hBCATc and hBCATm. However, while this work mirrored animal models in that hBCATc was localised specifically to neurons, hBCATm was absent from astrocytes and instead labelled the vasculature – contrary to animal models. Another novel finding of this work links altered aminotransferase expression to AD pathology. An increase of hBCATm expression of +117% (p = 2.29 x 10^{-4}) and +143% (p = 7.70 x 10^{-5}) in the frontal and temporal cortex of AD subjects relative to matched controls demonstrates the disease association of hBCATm. A non-significant increase of 32% was observed for hBCATc in the frontal region. With hBCATm expression correlating with Braak stage in both the frontal (p = 1.2 x 10^{-5}, ρ +0.468) and temporal (p = 3.4 x 10^{-4}, ρ+0.391) cortex this work posits that altered BCAA metabolism is occurring simultaneously with AD progression and may be a novel therapeutic target for the treatment of dementia. Another novel aspect of this work also demonstrates cell surface expression of hBCATc and relates this to mTOR signalling. Altered cell surface and protein expression was investigated with functional activity. Together this data demonstrated expressional, functional or activity changes in hBCATc due to glutamate, insulin, leucine, TNFα and IL1α.
Posters, presentations and publications

Posters and presentations

The role of hBCAT in glutamate toxicity, PGR presentation, University of Bristol (2011.04.18)
Expressional alteration of the BCAT enzymes in the AD brain, poster presentation, UWE (2012.01.13)
The role of hBCAT in glutamate toxicity, PGR presentation, UWE (2012.08.09)
Pilot study: Expressional changes of hBCATc in the IMR-32 cell line, implications for neurological disease, poster presentation, UWE (2012.12.19)
Co-localisation of hBCATm protein with LC3-II using confocal and electron microscopy: relation to AD pathology, poster presentation, ARUK conference (2013.02.26)

Papers

Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation, published paper (2012)
Upregulation of the BCAT protein in the brains of patients with Alzheimer’s disease: implications in glutamate toxicity (in review)
Contents page

Acknowledgments... III

Abstract.. IV

Posters, presentations and publications ... V

Posters and presentations.. V

Papers.. V

Contents page.. VI

Figure contents page ... XIII

Table contents page ... XVI

Abbreviation... XVIII

1 Introduction .. 1

1.1 The branched chain aminotransferase proteins ... 1

1.2 The transamination and oxidation of the BCAAs ... 2

1.3 3D structure for hBCATm and hBCATc... 7

1.4 Unique redox-active CXXC of the hBCAT proteins ... 10

1.5 Distribution of the BCAT proteins in mammalian models. 13

1.6 The BCAA: BCKA shuttle .. 16

1.7 Leucine as a nutrient signal .. 18

1.8 The impact of BCAA in the pathology of disease .. 22

1.8.1 Maple syrup urine disease .. 23
1.8.2 Obesity and type II diabetes ...23
1.8.3 Cancer ...24
1.8.4 Liver disease ...25
1.8.5 Traumatic brain injury and Cognitive impairment26
1.8.6 Contraindication of BCAA supplementation27
1.9 The BCAT proteins in health, disease and animal models28
1.9.1 Cancer ...28
1.9.2 Knock-out mice ...30
1.9.3 Apoptosis ..31
1.10 Glutamate signalling and toxicity ..32
1.11 Alzheimer’s disease ..38
1.12 Neuroanatomy and Neuropathology ...41
2 Aims and Objectives ..47
3 Materials ..49
3.1 Antibodies ...49
3.2 Chemicals ...49
3.3 Molecular biology ...51
4 Methods ...53
4.1 Tissue preparation of human brain samples for distribution and expression analysis ...53
4.2 Immunohistochemistry

4.2.1 Investigation of hBCAT and PDI protein distribution within the human brain by Immunohistochemistry

4.2.2 Scoring protocol for expressional analysis of hBCAT in AD and control individuals

4.3 Wet transfer Western blot analysis

4.3.1 Protein concentration determination by the Bradford assay

4.3.2 Wet transfer Western blot analysis

4.3.4 Wet transfer Western blot analysis of cell lysate

4.3.5 Wet transfer Western blot analysis of AD human brain homogenate

4.3.6 Wet transfer Western blot analysis of MND human brain homogenate

4.4 Cell culture

4.4.1 Cell culture of human neuroblastoma IMR-32 cells

4.4.2 Treatment of IMR-32 cells for Western blot analysis, activity assay and flow cytometry

4.4.3 RIPA extraction of cell lines for expressional analysis

4.4.4 Tissue extraction maintaining hBCAT activity from human neuroblastoma IMR-32 cells

4.5 Flow cytometry

4.5.1 Investigation of cell surface hBCATc expression by Flow cytometry
4.6 Electron microscopy ..73

4.6.1 Investigation of hBCAT and PDI subcellular localisation and co-localisation by Electron microscopy. ...73

4.7 Branched chain aminotransferase protein activity assay74

4.7.1 Branched chain aminotransferase protein activity assay74

4.8 Human branched chain aminotransferase protein over-expression and purification ...75

4.8.1 Preparation of dialysis tubing ..75

4.8.2 Human branched chain aminotransferase over-expression75

4.8.3 Human branched chain aminotransferase purification76

5 Statistics ...78

6 Results ..79

6.1 Distributional analysis of hBCATc, hBCATm and hPDI proteins to the aged human brain ..79

6.1.1 Antibody specificity ..79

6.1.2 Distribution of hBCATc within the human brain80

6.1.3 Distribution of hBCATm within the human brain97

6.1.4 Distribution of hPDI within the human brain and co-localisation with hBCAT ..104

6.2 Investigation of protein alteration in Alzheimer’s disease112

6.2.1 The effect of post-mortem delay and pH on hBCAT expression 114
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2 Effect of AD on hBCAT protein expression</td>
</tr>
<tr>
<td>6.2.3 Effect of MND on hBCAT protein expression</td>
</tr>
<tr>
<td>6.2.4 Distribution of the hBCAT proteins in AD compared to controls</td>
</tr>
<tr>
<td>6.2.5 Correlation of hBCATc, hBCATm and S-glutathionylated protein to</td>
</tr>
<tr>
<td>key physiological and genetic factors</td>
</tr>
<tr>
<td>6.2.6 Correlation of hBCATc, hBCATm and S-glutathionylated protein to</td>
</tr>
<tr>
<td>key pathological features of AD</td>
</tr>
<tr>
<td>6.3 Functional analysis of hBCAT in the neuroblastoma cell line IMR32</td>
</tr>
<tr>
<td>6.3.1 Neuroblastoma cell line IMR32 is sensitive to glutamate and KIC</td>
</tr>
<tr>
<td>6.3.2 Investigation of IMR32 cell line differentiation</td>
</tr>
<tr>
<td>6.3.3 Investigation of cell surface expression of hBCATc</td>
</tr>
<tr>
<td>6.3.4 Expression and activity of hBCAT in the IMR32 cell line</td>
</tr>
<tr>
<td>7 Discussion</td>
</tr>
<tr>
<td>7.1 Localisation of hBCAT and hPDI in relation to function</td>
</tr>
<tr>
<td>7.1.1 Localisation and proposed function of hBCATm in the brain</td>
</tr>
<tr>
<td>vasculature</td>
</tr>
<tr>
<td>7.1.2 Localisation and proposed function of hBCATc in neurons</td>
</tr>
<tr>
<td>7.1.3 Mapping of the redox proteins hPDI to the human brain</td>
</tr>
<tr>
<td>7.1.4 Localisation summary</td>
</tr>
<tr>
<td>7.2 Overexpression and post-translational modification of hBCAT in AD</td>
</tr>
</tbody>
</table>
7.2.1 Factors significantly associated with expression of hBCAT and proposed functional role in AD ..210
7.2.2 Oxidation and S-nitrosylation in AD and the hBCAT protein216
7.2.3 S-glutathionylation in AD and the hBCAT protein222
7.2.4 Phosphorylation in AD and relation to BCAT226
7.2.5 Glycosylation in AD and possible relation to BCAT230
7.2.6 Protein expression and modification summary233
7.3 Insights into hBCAT function and relation to AD utilising the neuroblastoma cell line IMR32 ..236
 7.3.1 The effect of hBCAT metabolites on cell morphology and viability .237
 7.3.2 Hormone and hBCAT metabolites significantly associated with the expression and activity of the hBCATc protein.239
 7.3.3 Immune factors significantly associated with the expression and activity of the hBCAT protein ...241
 7.3.4 Novel functions of the hBCAT proteins in cell signalling244
 7.3.5 Novel colocalisation of the hPDI and hBCATm proteins, chaperone mediated functions ..247
 7.3.6 Summary of cell work and implications for AD treatment and pathology ..248
8 Conclusion ..251
9 Future work ..255
10 References ..257

11 Appendix ..316

 11.1 Figures from results section 5.2 not included in main text316

 11.2 Exppressional alteration of the BCAT enzymes in the AD brain, poster presentation, UWE (2012.01.13) ...338

 11.3 Pilot study: Exppressional changes of hBCATc in the IMR-32 cell line, implications for neurological disease, poster presentation, UWE (2012.12.19) ...339

 11.4 Co-localisation of hBCATm protein with LC3-II using confocal and electron microscopy: relation to AD pathology, poster presentation, ARUK conference (2013.02.26) ..340

 11.5 Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation, published paper (2012) ..341

 11.7 Upregulation of the BCAT protein in the brains of patients with Alzheimer’s disease: implications in glutamate toxicity (2014)372
Figure contents page

Figure 1.1 The metabolism of the branched chain amino acids..........................3
Figure 1.2 Ping-Pong kinetics of the hBCAT protein..6
Figure 1.3 Complete structure of the hBCATc and hBCATm protein with complexed PLP..9
Figure 1.4 Oxidation of the thiol group and reversal of the disulphide formation in the hBCATc protein...12
Figure 1.5 Localisation of BCAT in current models..17
Figure 1.6 Branched chain amino acid cycle and glutamate/glutamine cycle between astrocytes and neurons ...19
Figure 1.7 mTOR activation via insulin receptor activation and the possible role of leucine...21
Figure 1.8 An overview of glutamate toxicity. Figure A shows normal events of calcium homeostasis within the neuron ..35
Figure 1.9 Brain sagittal section showing all main areas....................................42
Figure 1.10 Braak stages I-VI...45
Figure 1.11 A diagrammatic representation of hippocampus pathology with increasing Braak stage...46

Figure 6.1 Specificity of the antibodies raised to hBCATc and hBCATm.........79
Figure 6.2 Human cytosolic branched chain aminotransferase (hBCATc) staining in the temporal lobe and cerebellum (n = 12, n = 6)82
Figure 6.3 Human cytosolic branched chain aminotransferase (hBCATc) staining in the temporal neocortex and cerebellum (n = 12, n = 6)84
Figure 6.4 Human cytosolic branched chain aminotransferase (hBCATc) staining in the hippocampus and temporal cortex ($n^i = 12, n^e = 6$).................................85
Figure 6.5 Human cytosolic branched chain aminotransferase (hBCATc) staining in the temporal cortex ($n^i = 12, n^e = 6$)..86
Figure 6.6 Human cytosolic branched chain aminotransferase (hBCATc) staining in the frontal cortex and white matter ($n^i = 12, n^e = 6$).................................87
Figure 6.7 Human cytosolic branched chain aminotransferase (hBCATc) staining in the occipital lobe ($n^i = 12, n^e = 6$)..88
Figure 6.8 Human cytosolic branched chain aminotransferase (hBCATc) staining in the Basal ganglia (putamen) ($n^i = 12, n^e = 6$).................................90
Figure 6.9 Human cytosolic branched chain aminotransferase (hBCATc) staining in the hypothalamus ($n^i = 4, n^e = 4$)..91
Figure 6.10 Human cytosolic branched chain aminotransferase (hBCATc) staining in the Mid brain ($n^i = 12, n^e = 6$)..93
Figure 6.11 Human cytosolic branched chain aminotransferase (hBCATc) staining in the cerebellum and white matter ($n^i = 12, n^e = 6$).................................94
Figure 6.12 Human cytosolic branched chain aminotransferase (hBCATc) staining in the Pons ($n^i = 12, n^e = 6$)...96
Figure 6.13 Human mitochondrial branched chain aminotransferase (hBCATm) staining in the hippocampus and temporal cortex ($n^i = 12, n^e = 6$).........................99
Figure 6.14 Human mitochondrial branched chain aminotransferase (hBCATm) staining in the human brain ($n^i = 12, n^e = 6$)..100
Figure 6.15 Human cytosolic branched chain aminotransferase (hBCATc) and human mitochondrial branched chain aminotransferase (hBCATm) staining in the inferior olivary nucleus ($n^i = 4, n^e = 4$)..101
Figure 6. 16 Human cytosolic branched chain aminotransferase (hBCATc) and human mitochondrial branched chain aminotransferase (hBCATm) staining in the parietal cortex (n_i = 12, n_e = 6)...103

Figure 6. 17 Human protein disulphide isomerase (hPDI) staining in the hippocampus and temporal cortex (n_i = 2, n_e = 2)...106

Figure 6. 18 Human protein disulphide isomerase (hPDI) staining in the cerebellum (n_i = 2, n_e = 2)..107

Figure 6. 19 Co-localisation of human cytosolic branched chain aminotransferase (hBCATc) and human mitochondrial branched chain aminotransferase (hBCATm) with human protein disulphide isomerase (hPDI) to the same cell types in the cerebellum, temporal lobe and hippocampus (n_i = 4, n_e = 4)..108

Figure 6. 20 Transmission electron microscopy showing PDI localisation to the mitochondria of IMR-32 neuronal cells...111

Figure 6. 21 Scatterplots of Braak staging correlated with Amyloid β average (%) and Tau average (%) of the temporal cortex ..113

Figure 6. 22 Frontal cortex expression of the hBCAT protein in PM delay samples (n_i = 2, n_e = 2)..115

Figure 6. 23 Scatterplots of frontal hBCATc and hBCATm protein levels with increasing PM delay (n_i = 2, n_e = 2)..116

Figure 6. 24 Frontal and temporal cortex expression of the hBCAT protein in AD subjects compared to age and gender matched controls (n_i = 80, n_e = 30 for each protein)..118

Figure 6. 25 Boxplots of frontal and temporal hBCATc protein levels in AD subjects compared to matched controls..119
Figure 6. 26 Boxplots of frontal and temporal hBCATm protein levels in AD subjects compared to matched controls.................................121

Figure 6. 27 Frontal and temporal cortex levels of glutathionylated protein in AD subjects compared to matched controls (nⁱ = 50 and n^e = 10 and 10)......122

Figure 6. 28 Box plots of frontal and temporal glutathionylated protein levels in AD subjects compared to matched controls.................................123

Figure 6. 29 Motor cortex expression of the hBCAT protein in MND subjects compared to matched controls (nⁱ = 10, n^e = 2) ..125

Figure 6. 30 Interval plots of motor cortex hBCATm and hBCATc protein expression in MND subjects compared to matched controls126

Figure 6. 31 Staining of hBCATc in the hippocampus and temporal of AD and control subject (nⁱ = 60, n^e = 30) ..128

Figure 6. 32 Neuronal staining of hBCATc in the temporal cortex of AD and control individuals (nⁱ = 60, n^e = 30) ..129

Figure 6. 33 Staining of hBCATm in the hippocampus and temporal of AD and control individuals (nⁱ = 60, n^e = 30) ..130

Figure 6. 34 Vessel staining of hBCATm in temporal cortex of AD and control individuals (nⁱ = 60, n^e = 30) ..131

Figure 6. 35 Histograms of temporal and hippocampal hBCATc and hBCATm protein level scores in AD subjects compared to matched controls (nⁱ = 60, n^e = 30)..132

Figure 6. 36 Scatterplots of frontal and temporal hBCATc protein levels correlated with age...135

Figure 6. 37 Scatterplots of frontal and temporal hBCATm protein levels correlated with age...136
Figure 6. 38 Scatterplots of frontal and temporal glutathionylated protein levels correlated with age...137
Figure 6. 39 Scatterplots of frontal and temporal hBCATc protein levels correlated with brain weight ..138
Figure 6. 40 Scatterplots of frontal and temporal hBCATm protein levels correlated with brain weight. ...139
Figure 6. 41 Interval plot of frontal and temporal hBCATc protein levels in females compared to males...141
Figure 6. 42 Interval plot of frontal and temporal hBCATm protein levels in females compared to males...142
Figure 6. 43 Interval plot of frontal and temporal glutathionylated protein levels in females compared to males...143
Figure 6. 44 Individual value plots of frontal and temporal hBCATc protein levels with ACE genotype ...144
Figure 6. 45 Individual value plots of frontal and temporal hBCATm protein levels with ACE genotype. ...146
Figure 6. 46 Individual value plots of frontal and temporal hBCATc protein levels with IRAP genotype ...147
Figure 6. 47 Individual value plots of frontal and temporal hBCATm protein levels with IRAP genotype ...148
Figure 6. 48 Individual value plots of frontal and temporal hBCATc protein levels with APOE genotype...149
Figure 6. 49 Individual value plots of frontal and temporal hBCATm protein levels with APOE genotype...150
Figure 6. 50 Scatterplots of frontal and temporal hBCATc protein levels correlated with Braak stage ..152
Figure 6. 51 Scatterplots of frontal and temporal hBCATm protein levels correlated with Braak stage ..153
Figure 6. 52 Scatterplots of frontal and temporal hBCATc protein levels correlated with Tau average (%) ..155
Figure 6. 53 Scatterplots of frontal and temporal hBCATm protein levels correlated with Tau average (%) ..156
Figure 6. 54 Scatterplots of frontal and temporal hBCATc protein levels correlated with soluble Aβ ...157
Figure 6. 55 Scatterplots of frontal and temporal hBCATm protein levels correlated with soluble Aβ ...158
Figure 6. 56 Scatterplots of frontal and temporal hBCATc protein levels correlated with insoluble Aβ ...159
Figure 6. 57 Scatterplots of frontal and temporal hBCATm protein levels correlated with insoluble Aβ ...160
Figure 6. 58 Scatterplots of frontal and temporal hBCATc protein levels correlated with small vessel disease (SVD) score163
Figure 6. 59 Scatterplots of frontal and temporal hBCATm protein levels correlated with small vessel disease (SVD) score164
Figure 6. 60 Scatterplots of frontal and temporal glutathionylated protein levels correlated with small vessel disease (SVD) score165
Figure 6. 61 The effect of 12 hour 12 mM glutamate treatment on cell morphology of the IMR32 cells in different media (n° = 2)168
Figure 6. 62 The effect of KIC on IMR32 cell morphology and growth (n° = 2) ..169

Figure 6. 63 Differentiation of IMR-32 cells in 0% (1) or 5% (2) FCS media at day 8 (n° = 2) ..171

Figure 6. 64 Investigation of the expression of hBCATc in differentiated neurons (n° = 2) ..173

Figure 6. 65 Flow cytometry analysis of cell surface hBCATc on IMR-32 neuronal cells (n° = 1) ..175

Figure 6. 66 Flow cytometry analysis of cell detachment methods for cell surface IMR32 hBCATc (n° = 2). ..176

Figure 6. 67 Flow cytometry analysis of cell detachment methods for cell surface IMR32 hBCATc (n° = 2). ..177

Figure 7.1 Model proposed for hBCAT signalling in the human brain199

Figure 7.2 The metabolism of the branched chain amino acid isoleucine to produce neurotransmitters ..202

Figure 7.3 Protein sequence of the hBCAT proteins and known motifs227

Figure 7.4 Proposed relationship between TNFα and hBCATc243

Figure 7.5 Proposed mechanism of hBCATc cell surface signalling246

Figure 8. 1 Model proposed for hBCAT signalling in the human brain in health (A) and AD (B). ..252
Table contents page

Table 1. 1 Kinetic constants of the hBCAT proteins Kinetic constants of the hBCAT proteins..4

Table 4. 1 Control cases used in distributional analysis of hBCATc and hBCATm utilizing immunohistochemistry..55
Table 4. 2 Alzheimer’s disease and control cases used in expressional analysis of hBCATc and hBCATm utilizing immunohistochemistry...............56
Table 4. 3 Alzheimer’s disease and control cases used in distributional analysis of hPDI with immunohistochemistry...57
Table 4. 4 Alzheimer’s disease and control cases used in expressional analysis of hBCATc and hBCATm as analysed utilizing Western blot analysis 58
Table 4. 5 Motor neuron disease and control cases used in expressional analysis of hBCATc and hBCATm as analysed utilizing Western blot analysis 59
Table 4. 6 Non-neuronal staining scoring criteria for hBCATc and hBCATm utilizing immunohistochemistry ...62
Table 4. 7 hBCATc and hBCATm staining scoring criteria utilizing immunohistochemistry ...62
Table 4. 8 Neuronal hBCATc and hBCATm staining score criteria for the CA4 area of the hippocampus and temporal area utilizing immunohistochemistry...63
Table 4. 9 Neuronal hBCATc and hBCATm staining score criteria for CA1 area of the hippocampus utilizing immunohistochemistry63
Table 4. 10 Blood vessel (BV) hBCATm staining scoring criteria utilizing immunohistochemistry ...63
Table 4. 11 Cell treatments for IMR32 neuroblastoma cells.70
Table 4. 12 Table of buffers for hBCAT extraction from IMR-32 cell lysate for activity assay..72
Table 6.1 An overview of hBCATc immunoreactivity throughout the human brain ($n_i = 12$, $n_e = 35$)...81
Table 6.2 An overview of hBCATm immunoreactivity throughout the human brain ($n_i = 12$, $n_e = 35$)..98
Table 7.1 Overview of protein expressional changes in AD compared to controls. ...211
Abbreviations

αKG – α-Ketoglutarate
AD – Alzheimer’s disease
ADP – Adenosine diphosphate
ALS – Amyotrophic lateral sclerosis
APS – Ammonium persulphate
ATP – Adenosine triphosphate
BBB – Blood brain barrier
BCAA – Branched chain amino acids
BCKA – Branched chain α-keto acids
BCKD – Mitochondrial branched chain α-keto acid dehydrogenase enzyme
Bim – Bcl-2 interacting mediator of cell death
BOD – Bcl-2 related ovarian death gene
BSA – Bovine serum albumin
BV – Blood vessels
CHAPS – 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate
CSF – Cerebrospinal fluid
Cys – Cysteine
DAB – 3,3’-Diaminobenzidine
DAPI – 4’,6-diamidino-2-phenylindole
DIOC6 – 3,3’-dihexyloxacarbocyanine iodide
DTT – Dithiothreitol
EAAT – Excitatory amino acid transporter
EBM – Eagles basal media
Abbreviations

EGM – Endothelial cell growth media
EDTA – Ethylenediaminetetraacetic acid
EGTA – Ethyleneglycoltetraacetic acid
ER – Endoplasmic reticulum
GABA – Gamma-aminobutyric acid
GAPDH – Glyceraldehyde 3-phosphate dehydrogenase
GDH – Glutamate dehydrogenase 1
GLUT – glucose transporter
Grx – Glutaredoxin
GSNO – S-nitrosoglutathione
GSH – Glutathione reduced
GSSG – Glutathione oxidized
hBCATc – Human branched chain aminotransferase (cytosolic isoform)
hBCATm – Human branched chain aminotransferase (mitochondrial isoform)
HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HRP – Horseradish peroxidase
IMR32 – Human neuroblastoma cell line
IL – Interleukin
IPTG – Isopropyl β-D-1-thiogalactopyranoside
KIC – Ketoisocaproate
KIV – Keto-isovaleric acid
KMV - Keto-β-methylvalerate
L1 – Large neutral amino acid transporter 1
LDS – Lithium dodecyl sulphate
Abbreviations

nAChR – Nicotinic acetylcholine receptor
NADH – Nicotinamide adenine dinucleotide
NEAA – Non essential amino acids
NMDA – N-methyl-D-aspartic acid
NOS – Nitric oxide synthetase
MMSE – Mini-mental state examination
MSUD – Maple syrup urine disease
mTOR – Mammalian target of Rapamycin
mTORC1 – Mammalian target of Rapamycin complex 1
mTORC2 – Mammalian target of Rapamycin complex 2
NADPH – Nicotinamide adenine dinucleotide phosphate
NO – Nitric oxide
PDI – Protein Disulphide isomerase
PKC – Protein kinase C
PLP – Pyridoxal phosphate
PMP – Pyridoxine monophosphate
PMSF – Phenylmethyl sulfonyl fluoride
RIPA – Radioimmunoprecipitation assay buffer
RPMI – Roswell park memorial institute medium
SDS – Sodium dodecyl sulphate
TBST – Tris-Buffered Saline/Tween
TCA – Trichloroacetic acid
TEMED – Tetramethylethylenediamine
Trx – Thioredoxin
Abbreviations

TNF – Tissue necrosis factor
UO – ubiquionone oxidoreductase
ZIP – zipper interacting protein