THE EXPRESSION OF ALTERNATIVE SPLICE VARIANTS OF HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR 2 IN INVASIVE BREAST CANCER AND CELL LINE MODELS

EMMA ASSAM NKWAM

A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy

Faculty of Health and Life Sciences

May 2015
ACKNOWLEDGEMENTS

My very sincere appreciation goes to my Director of Studies, Professor Anthony Rhodes, and to my second supervisor Dr Michael Ladomery, for all their invaluable help and support, advice and training. I thank them both also for the opportunity to do this research.

I thank the people who have been very helpful during my time as a PhD student; Dave Corry for teaching me tissue culture; Rachel Hagen for her invaluable help with extraction of RNA from FFPE samples; Patricia Adamo for all her help with my gene analysis; Dann Turner for his help with bioinformatics; and Jonathon Hull for his help with western blotting.

I thank all past and present members of the CRIB lab, as well as the team of technicians, and especially my friends Sarah Dean, Keith Page and Hanan Alabouh for all their help and support.

I thank my family and friends, especially my siblings, for their continued support throughout this journey. I would never have made it this far without the people who love me the most.

My parents believed in me enough to fund this research. For this and so much more I am eternally grateful.

I thank my husband Michael, the wind beneath my wings. Thank you for always telling me this was possible. Words are not enough.

I dedicate this thesis to our little angel and my queen, Olivia-Grace Nkwam.
ABBREVIATIONS

ABC Avidin-Biotin Complex
AKT Protein Kinase B
bp Base Pair
cDNA Complementary DNA
CISH Chromogenic In Situ Hybridization
DAB Diaminobenzidine
DEPC Diethylprocarbonate
DMEM Dolbecco’s Modified Eagle Medium
DNA Deoxyribonucleic Acid
dNTPs Deoxynucleotide Triphosphates
ECD Extracellular Domain
ETDA Ethylenediaminetetraacetic Acid
EGFR Epidermal Growth Factor Receptor
ELISA Enzyme-Linked Immunosorbent Assay
ER Oestrogen Receptor
ERK Extracellular Signal-Regulated Kinases
ESS Exonic Splice Silencers
ESE Exonic Splice Enhancers
FDA Food And Drug Agency
FFPE Formalin-Fixed And Paraffin-Embedded
FISH Fluorescence In Situ Hybridisation
GRB2 Growth Factor Receptor Bound Protein 2
GTP Guanosine Triphosphate
HER Human Epidermal Growth Factor Receptor
HER2 Human Epidermal Growth Factor Receptor 2
hnRNP Heterogeneous Nuclear Ribonucleoproteins
HRP Horseradish Peroxidase
IGFR Insulin-Like Growth Factor Receptor
IHC Immunohistochemistry
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISE</td>
<td>Intronic Splice Enhancers</td>
</tr>
<tr>
<td>ISS</td>
<td>Intronic Splice Silencers</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani Medium</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute For Health And Clinical Care</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-Activated Protein Kinase</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μg</td>
<td>Miligram</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian Target Of Rapamycin</td>
</tr>
<tr>
<td>PARP-1</td>
<td>Poly [ADP-Ribose] Polymerase 1</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-Kinase</td>
</tr>
<tr>
<td>PIP3</td>
<td>Phosphatidylinositol (3,4,5)-Triphosphate</td>
</tr>
<tr>
<td>PR</td>
<td>Progesterone Receptor</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatease And Tensin Homologue</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transcription</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription Polymerase Chain Reaction</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small Interfering Ribonucleic Acid</td>
</tr>
<tr>
<td>SOS</td>
<td>Sons Of Sevenless</td>
</tr>
<tr>
<td>SR protein</td>
<td>Serine And Arginine-Rich Protein</td>
</tr>
<tr>
<td>snRNP</td>
<td>Small Nuclear Ribonucleic Particles</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetate-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>TNBC</td>
<td>Triple Negative Breast Cancer</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>WT1</td>
<td>Wilm's Tumour 1</td>
</tr>
</tbody>
</table>
CHAPTER 1. GENERAL INTRODUCTION ...1

1.1 Breast Cancer ...1

1.2 Classification of breast cancers ..3

1.2.1 Luminal A ...4

1.2.2 Luminal B ...4

1.2.3 HER2 overexpressing ..5

1.2.4 Basal-like ...5

1.2.5 Normal breast-like ...6

1.2.6 Claudin-low ...6

1.3 Discovery of the Human Epidermal Growth Factor Receptor 2 (HER2) . 9

1.4 HER2 signalling pathways ...10

1.4.1. Phosphoinositide-3-kinase (PI3K/AKT) cascade13

1.4.2. Mitogen Activated Protein Kinase (MAPK) cascade14

1.5 HER2 as a prognostic factor in breast cancer ..16

1.6 Testing for HER2 status..17

1.6.1. Testing for HER2 status at the protein level ...17

1.6.1.1. Immunohistochemistry ...17

1.6.1.2. The Enzyme-Linked Immunosorbant Assay (ELISA)18

1.6.2. Testing for HER2 status at the DNA level ...19

1.6.2.1. Fluorescence In Situ Hybridization (FISH)19

1.6.2.2. Chromogenic In Situ Hybridization (CISH)20

1.6.2.3. Silver In Situ Hybridization (SISH) ..20

1.6.3. Testing for HER2 status at the RNA level ...21

1.6.3.1. Quantitative Real-Time Reverse Transcription Polymerase Chain

 Reaction (qRT-PCR) ..21

1.7 Therapies in HER2 positive cancer ..22
1.7.1. *Trastuzumab* treatment for patients with *HER2* positive invasive breast cancer .. 23

1.7.2. *Lapatinib* ... 25

1.7.3. *Pertuzumab* .. 26

1.8 Challenges and unmet needs in the treatment of *HER2* positive breast cancer .. 28

1.9 *Alternative Splicing* .. 30

1.9.1. The role of alternative splicing in the development of cancer ... 35

1.10 Alternative splicing of *HER2* and *HER2* Splice Isoforms .. 36

1.10.1. Herstatin .. 36

1.10.2. *HER2Δ16* ... 38

1.10.3. P100 *HER2* .. 40

1.11 Hypothesis and objectives of this Study ... 41

1.11.1. Hypothesis .. 41

1.11.2. Objectives .. 42

CHAPTER 2. GENERAL MATERIALS AND METHODS .. 44

2.1. Antigen Retrieval Immunohistochemistry ... 44

2.1.1. Buffers used in Immunohistochemistry ... 44

2.1.2. Antigen retrieval microwave heating technique .. 45

2.1.3. Immunohistochemical staining methods ... 46

2.1.4. Evaluation of Immunohistochemistry results .. 47

2.2. Cell culture .. 47

2.3. RNA extraction .. 48

2.3.1 RNA extraction from cell cultures ... 48

2.3.2 RNA extraction from Formalin Fixed, Paraffin Embedded (FFPE) samples 49

2.3.3 Assessment of RNA yield and quality .. 51
2.4. Reverse Transcription Polymerase Chain Reaction (RT-PCR).............. 52
2.4.1. First-Strand Synthesis of cDNA... 52
2.4.2. Standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) .. 52
2.4.3. Agarose gel electrophoresis... 53
2.5. Cloning of RT-PCR products for sequencing... 53
2.5.1. Gel extraction and purification of PCR products 53
2.5.2. Preparation of LB broth and LB/Agar plates with ampicillin/IPTG/X-GAL .. 54
2.5.3. Ligation into pGEM-T Easy vector .. 55
2.5.4. Transformation into JM109 High Efficiency Competent E. coli cells...... .. 55
2.5.5. Extraction of plasmid DNA... 56
2.6. Quantitative real-time PCR (qRT-PCR)... 57
2.6.1. Quantitative real-time PCR amplifications .. 57
2.6.2. Calculations .. 57
2.6.3. Normalisation of real-time qRT-PCR .. 58
2.7. Protein analysis.. 61
2.7.1. Protein extraction... 61
2.7.2. Protein quantification .. 62
2.7.3. SDS PAGE... 62
2.7.4. Western blot analysis.. 63
2.8. RNAi methods ... 64
2.8.1. siRNA transfection of cells ... 64
CHAPTER 3. DISCOVERY OF HER2 AND HER2 ALTERNATIVE SPLICE VARIANTS IN BREAST AND OVARIAN CANCER CELL LINES 66
3.1 Introduction... 66
3.2 Methods.. 68
3.2.1 Antigen Retrieval for Immunohistochemistry .. 68
3.2.2 HER2 primer design for RT-PCR ... 68
3.2.3 DNA sequencing ... 70
3.2.4 Analysis of sequencing results ... 71
3.3 Results .. 71

3.3.1 Detection of HER2 protein in cell lines by Immunohistochemistry
... 71
3.3.2 Detection of HER2 mRNA expression in cell lines by RT-PCR 77
3.3.3 Analysis of HER2 cDNA amplicon sequences .. 85
3.4 Summary ... 94

CHAPTER 4. BIOINFORMATIC ANALYSIS OF HER2 AND HER2 ALTERNATIVE
SPLICE VARIANTS .. 95
4.1 Introduction .. 95
4.2 Objectives .. 96
4.3 Methods .. 96

4.3.1 HER2 sequence retrieval .. 96
4.3.2 Alignment of HER2 transcript variants and isoforms 97
4.3.3 Analysis of potential splice factor binding sites in HER2 alternative
splice variants ... 97
4.3.4 Structural and functional characterisation of the wild-type HER2
protein .. 98

4.4 Results ... 98

4.4.1 HER2 RNA sequence analysis ... 98
4.4.2 HER2 protein sequence analysis .. 101
4.4.3 Structural and functional characterisation of the wild-type HER2
(isoform 1) ... 103
4.4.4 Analysis of potential splice factor binding sites 107
4.4.5 Post-translational modification of HER2 protein 111
4.4.6 Structural and functional characterisation of novel HER2 isoforms

4.4.6.1 Additional band produced by primers E15F/E19R give rise to a loss of the HER2 ATP binding pocket, and a novel HER2 splice variant HER2ΔATP .. 112
4.4.6.2 Additional band produced by primers E12F/E15R gives rise to the loss of the HER2 extracellular domain, and a novel HER2 splice variant HER2ΔECD .. 113
4.4.6.3 Additional bands produced using primer pairs NP1/NP2 and NP5/NP6 give rise to the HERΔ16 isoform corresponding to the loss of subdomain IV of the HER2 extracellular domain 114

4.5 Analysis of new 5’ splice site boundaries for HER2ΔATP 115

4.6 Summary .. 116

CHAPTER 5. EXPRESSION OF HER2 AND HER2 ALTERNATIVE SPLICE VARIANTS IN NORMAL HUMAN TISSUES AND HUMAN BREAST TUMOURS 118

5.1 Introduction .. 118
5.2 Objectives .. 119
5.3 Methods .. 120

5.3.1 Analysis of cDNA samples from a normal tissue panel for the expression of HER2 and HER2 alternative splice variants 120

5.3.2 Analysis of frozen clinical samples from HER2 positive breast tumours for the expression of HER2 and HER2 alternative splice variants .. 122

5.3.3 Analysis of formalin fixed and paraffin embedded (FFPE) clinical samples from HER2 positive breast tumours for the expression of HER2 and HER2 alternative splice variants .. 124

5.4 Results .. 124

5.4.1 Expression of HER2 and HER2 alternative splice variants in cDNA samples from a normal tissue panel .. 124
5.4.2 Expression of HER2 and HER2 alternative splice variants in cDNA obtained from frozen clinical samples ... 127

5.4.3 Expression of HER2 and HER2 splice variants in formalin fixed and paraffin embedded (FFPE) clinical samples. ... 132

5.5 Summary .. 136

CHAPTER 6. REGULATION OF HER2 AND HER2 SPLICE VARIANTS IN CELL LINE MODELS .. 138

6.1. Introduction .. 138

6.2. Methods .. 140

6.2.1 Treatment of cells with protein kinase inhibitors .. 140

6.2.2 Treatment of cells with hypoxia mimetic factor Cobalt Chloride (CoCl₂) .. 141

6.2.3 siRNA silencing of SRPK1 and SRSF1 in MDA-MB-453 and SKBR3 cell lines .. 142

6.2.4 Western blot analysis ... 143

6.2.5 Real-time qPCR analysis of HER2, HER2 alternative splice variants, SRPK1 and SRSF1. .. 144

6.3. Results .. 145

6.3.1 Inhibition of SRPK1 by SRPIN340 modulates the expression of HER2 and HER2 alternative splice variants in MDA-MB-453 cell line 145

6.3.1.1. MDA-MB-453 cell line ... 146

6.3.1.1.1. Changes in the expression of wild-type HER2 following treatment with protein kinase inhibitors ... 146

6.3.1.1.2. Changes in the expression of HER2ΔECD following treatment with protein kinase inhibitors ... 148

6.3.1.1.3. Changes in the expression of HER2Δ16 following treatment with protein kinase inhibitors ... 150

6.3.1.1.4. Changes in the expression of HER2ΔATP following treatment with protein kinase inhibitors ... 152

6.3.1.2 SKBR3 cell line ... 154
6.3.1.2.1 The expression of wild-type HER2 following treatment with protein kinase inhibitors ... 155
6.3.1.2.2 The expression of HER2ΔECD following treatment with protein kinase inhibitors ... 156
6.3.1.2.3 The expression of HER2Δ16 following treatment with protein kinase inhibitors ... 158
6.3.1.2.4 The expression of HER2ΔATP following treatment with protein kinase inhibitors ... 160
6.3.1.3 BT-20 cell line .. 162
6.3.1.3.1 The expression of wild-type HER2 following treatment with protein kinase inhibitors ... 163
6.3.1.3.2 The expression of HER2ΔECD following treatment with protein kinase inhibitors ... 165
6.3.1.3.3 Changes in the expression of HER2Δ16 following treatment with protein kinase inhibitors ... 167
6.3.1.3.4 Changes in the expression of HER2ΔATP following treatment with protein kinase inhibitors ... 169
6.3.2 Induction of hypoxia by hypoxia mimetic factor Cobalt Chloride (CoCl₂) inhibits the expression of HER2 and HER2 alternative splice variants in SKBR3 cell line ... 171
6.3.2.1. Changes in HIF1-α expression after treatment of SKBR3 cells with Cobalt Chloride for 24 and 48 hours ... 172
6.3.2.2. Changes in the expression of HER2 and HER2 alternative splice variants after treatment of SKBR3 cells with Cobalt Chloride for 24 and 48 hours ... 174
6.3.3 The effects of SRPK1 and SRSF1 knockdown on the expression of HER2 and HER2 alternative splice variants in HER2-positive MDA-MB-453 and SKBR3 breast cancer cell lines ... 179
6.3.3.1 Confirmation of SRPK1 and SRSF1 knockdown in MDA-MB-453 cells ... 180
6.3.3.2 Knockdown of SRPK1 and SFSF1 shows no significant effect on the expression of HER2 and HER2 alternative splice variants in MDA-MB-453 cells at mRNA level ... 183
6.3.3.3. Confirmation of SRPK1 and SRSF1 knockdown in SKBR3 cells

6.3.3.4. Knockdown of SRPK1 and SFSF1 affects the expression of HER2 and HER2 alternative splice variants in SKBR3 cells at mRNA level

6.4. Summary

CHAPTER 7. DISCUSSION

REFERENCES

APPENDICES

LIST OF PRESENTATIONS
TABLES

Table 1.1: Molecular subtypes of HER2 and their characteristic features.................7

Table 2.1 Antibodies used in immunohistochemistry, their specificities and concentrations ... 45

Table 2.2 Cell line models used in cell culture studies and their culture conditions. .. 48

Table 2.3: Reference genes used for qRT-PCR and their functions in normal physiology. .. 61

Table 3.1: RNA concentrations and absorbance at 260/280 for each cell line........ 84

Table 3.2: cDNA concentrations and absorbance at 260/280 for each cell line......84

Table 4.1 HER2 amino acid composition as predicted by ProtParam..............107

Table 5.1 Primer sequences for the detection of HER2 and HER2 splice variants by qRT-PCR.. 120

Table 5.2 Minimum data set for frozen samples from invasive ductal carcinomas obtained from the Wales cancer bank (Cardiff, UK).. 123

Table 5.3: HER2 status, quantification and integrity of RNA obtained from FFPE samples.. 132

Table 6.1: Antibodies used in Western blotting and their specificities.............143

Table 6.2: SRPK1, SRSF1 and HIF1-α primer sequences..........................144

Table 6.3: Normfinder output for the selection of an optimal reference gene in MDA-MB-453 cells treated with protein kinase inhibitors SRPIN340, TG003 and INDY. .. 145

Table 6.4: Normfinder output for the selection of an optimal reference gene in SKBR3 cells treated with protein kinase inhibitors SRPIN340, TG003 and INDY.. 154
Table 6.5: *Normfinder* output for the selection of an optimal reference gene in BT-20 cells treated with protein kinase inhibitors *SRPIN340, TG003* and *INDY.* 163

Table 6.6: *Normfinder* output for the selection of an optimal reference gene in SKBR3 cells treated with Cobalt Chloride. 172

Table 6.7: *Normfinder* output for the selection of an optimal reference gene in MDA-MB-453 and SKBR3 cells after siRNA knockdown of *SRPK1* and *SRSF1* splice factors. 179

Table A1: List of RT-PCR oligonucleotide sequences 229
FIGURES

Figure 1.1 (A) Kaplan–Meier curves of disease-free survival and overall survival based on UNC337 database. ... 8

Figure 1.2 Schematic representation of HER2 .. 12

Figure 1.3 Schematic representation of the PI3K/AKT/mTOR pathway 14

Figure 1.4 Schematic representation of the RAS/RAF/MEK/MAPK cascade 15

Figure 1.5 Schematic representation of the mechanisms of action of current therapies for HER2 overexpressing breast cancer .. 27

Figure 1.6 Schematic representation of alternative splicing 32

Figure 1.7 Modes of alternative splicing ... 36

Figure 1.8 Schematic representation of Herstatin showing the retention of intron 8. ... 38

Figure 1.9 Schematic representation of HER2Δ16 showing the cassette exon on exon 16 ... 39

Figure 1.10 Schematic representation of p100 HER2 showing the retention of intron 15 ... 41

Figure 3.1: Design of HER2-specific RT-PCR primers for used to amplify HER2 cDNA. Arrows indicate positions of primers in target exons. 69

Figure 3.2: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using SP3 monoclonal antibody ... 73

Figure 3.3: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using CB11 monoclonal antibody ... 74

Figure 3.4: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using 6F11 monoclonal antibody .. 75
Figure 3.5: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using PGR636 monoclonal antibody. 67

Figure 3.6: Negative controls used in immunohistochemistry showing cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using SP3, CB11 and 6F11 monoclonal antibodies respectively. 68

Figure 3.7: RT-PCR amplification of HER2 exons 3-6 (primer pair E3F+E6R) using all six cell lines, and a negative (no RT) control. 69

Figure 3.8: RT-PCR amplification of HER2 exons 6-9 (primer pair E6F+E9R) using all six cell lines, and a negative (no RT) control. 69

Figure 3.9: RT-PCR amplification of HER2 exons 9-12 (primer pair E9F+E12R) using all six cell lines, and a negative (no RT) control. 70

Figure 3.10: RT-PCR amplification of HER2 exons 12-15 (primer pair E12F+E15R) using all six cell lines, and a negative (no RT) control. 71

Figure 3.11: RT-PCR amplification of HER2 exons 15-19 (primer pair E15F+E19R) using all six cell lines, and a negative (no RT) control. 71

Figure 3.12: RT-PCR amplification of HER2 exons 19-22 (primer pair E19F+E22R) using all six cell lines, and a negative (no RT) control. 72

Figure 3.13: RT-PCR amplification of HER2 exons 22-25 (primer pair E22F+E25R) using all six cell lines, and a negative (no RT) control. 72

Figure 3.14: RT-PCR amplification of HER2 exons 25-27 (primer pair E25F+E27R) using all six cell lines, and a negative (no RT) control. 73

Figure 3.15: RT-PCR amplification of HER2 exons 16-18 (primer pair NP1+NP2) using all six cell lines, and a negative (no RT) control. 73

Figure 3.16: RT-PCR amplification of HER2 exons 16-18 (primer pair NP5+NP6) using all six cell lines, and a negative (no RT) control. 74
Figure 3.17: Sequence alignment of HER2 insert with the reference HER2 exons 12-15 using Clustal Omega...86

Figure 3.18: Sequence alignment of HER2 insert with the wild type HER2 exons 12-15 using Clustal Omega..87

Figure 3.19: Sequence alignment of HER2 insert with the wild type HER2 exons 15-19 using Clustal Omega...88

Figure 3.20: Sequence alignment of HER2 insert with the wild type HER2 exons 15-19 using Clustal Omega...89

Figure 3.21: Sequence alignment of HER2 exons 15-18 using Clustal Omega..........90

Figure 3.22: Sequence alignment of HER2 exons 15-18 using Clustal Omega..........91

Figure 3.23: Sequence alignment of HER2 exons 15-17 using Clustal Omega..........92

Figure 3.24: Sequence alignment of HER2 exons 15-17 using Clustal Omega. The alignment shows deletions in the gene sequence for the region amplified in the bottom band using primer pairs NP5 + NP6. ...93

Figure 4.1. Schematic representation of the location of HER2 gene on chromosome 17, and flanking genes...99

Figure 4.2 Schematic of Pfam output showing HER2 functional domains and their positions..104

Figure 4.3 Phyre² output showing the 3D structure of HER2106

Figure 4.4 SpliceAid output for the analysis of splice factor binding motifs in exon 13 and 50 base pairs into the flanking introns...108

Figure 4.5 SpliceAid output for the analysis of splice factor binding motifs in exon 16 and 50 base pairs into the flanking introns..109

Figure 4.6 SpliceAid output for the analysis of splice factor binding motifs in exon 16 and 50 base pairs into the flanking introns...110
Figure 4.7 Analysis of cDNA and amino acid sequences of multiple bands obtained using primer pair E15F/E19R. ... 113

Figure 4.8 Analysis of cDNA and amino acid sequences of multiple bands obtained using primer pair E12F/E15R. .. 114

Figure 4.9 Analysis of cDNA and amino acid sequences of multiple bands obtained using primer pairs NP1/NP2 and NP5/NP6. ... 115

Figure 5.1: RT-PCR amplification of wild type HER2 and HER2ΔECD (primer pair E12F+E15R) in normal human tissue cDNA (1-10), using MDA-MB-453 cell line as a positive control. .. 125

Figure 5.2: RT-PCR amplification of wild type HER2 and HER2ΔATP (primer pair E15F+E19R) in normal human tissue RNA (1-10), using MDA-MB-453 cell line as a positive control. .. 126

Figure 5.3: RT-PCR amplification of wild type HER2 and HER2Δ16 (primer pair NP5+NP6) in normal human tissue RNA (1-10), using MDA-MB-453 cell line as a positive control. .. 126

Figure 5.4: RT-PCR amplification of 18s in normal human tissue cDNA and MDA-MB-453 cell line. ... 127

Figure 5.5: qPCR analysis of the expression of wild-type HER2 cDNA in clinical samples... 128

Figure 5.6: RT-PCR amplification of wild type HER2 and HER2ΔECD (primer pair E12F+E15R) in cDNA obtained from frozen tumours, using MDA-MB-453 cell line as a positive control. .. 128

Figure 5.7: qPCR analysis of the expression of HER2ΔECD in clinical samples. Each histogram bar is representative of one sample and three replicates (n=3). 129

Figure 5.8: RT-PCR amplification of wild type HER2 and HER2ΔATP (primer pair E15F+E19R) in RNA samples obtained from frozen tumours, using MDA-MB-453 cell line as a positive control. .. 129
Figure 5.9 qPCR analysis of the expression of HER2ΔATP in clinical samples...... 130

Figure 5.10: RT-PCR amplification of wild type HER2 and HER2Δ16 (primer pair NP1 + NP2) in cDNA samples obtained from frozen tumours, using MDA-MB-453 cell line as a positive control. .. 130

Figure 5.11: qPCR analysis of the expression of HER2Δ16 in clinical samples. 131

Figure 5.12: RT-PCR amplification of 18s in normal human tissue RNA and MDA-MB-453 cell line. ... 131

Figure 5.13: RT-PCR amplification of wild type HER2 and HER2ΔECD (primer pair E12F+E15R) in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control ... 133

Figure 5.14: RT-PCR amplification of wild type HER2 and HER2ΔATP (primer pair E15F+E19R) in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control ... 134

Figure 5.15: RT-PCR amplification of wild type HER2 and HER2Δ16 (primer pair NP1 and NP2) in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control. ... 135

Figure 5.16: RT-PCR amplification of 18s in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control. ... 135

Figure 6.1: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in MDA-MB-453 cells 24 hours after treatment. ... 147

Figure 6.2: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in MDA-MB-453 cells 24 hours after treatment. ... 147

Figure 6.3: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in MDA-MB-453 cells 24 hours after treatment. ... 149
Figure 6.4: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in MDA-MB-453 cells 48 hours after treatment.

Figure 6.5: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in MDA-MB-453 cells 24 hours after treatment.

Figure 6.6: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in MDA-MB-453 cells 48 hours after treatment.

Figure 6.7: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔATP alternative splice variant in MDA-MB-453 cells 24 hours after treatment.

Figure 6.8: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in MDA-MB-453 cells 48 hours after treatment.

Figure 6.9: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in SKBR3 cells 24 hours after treatment.

Figure 6.10: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in SKBR3 cells 48 hours after treatment.

Figure 6.11: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in SKBR3 cells 24 hours after treatment.

Figure 6.12: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in SKBR3 cells 48 hours after treatment.

Figure 6.13: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in SKBR3 cells 24 hours after treatment.

Figure 6.14: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in SKBR3 cells 48 hours after treatment.
Figure 6.15: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{ATP} alternative splice variant in SKBR3 cells 24 hours after treatment…. 161

Figure 6.16: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{ATP} alternative splice variant in SKBR3 cells 48 hours after treatment…. 162

Figure 6.17: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the wild-type \textit{HER2} in BT-20 cells 24 hours after treatment…………………………………… 164

Figure 6.18: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the wild-type \textit{HER2} in BT-20 cells 48 hours after treatment…………………………………… 165

Figure 6.19: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{ECD} alternative splice variant in BT-20 cells 24 hours after treatment…. 166

Figure 6.20: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{ECD} alternative splice variant in BT-20 cells 48 hours after treatment…. 167

Figure 6.21: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{16} alternative splice variant in BT-20 cells 24 hours after treatment…… 168

Figure 6.22: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{16} alternative splice variant in BT-20 cells 48 hours after treatment…… 169

Figure 6.23: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{ATP} alternative splice variant in BT-20 cells 24 hours after treatment…. 170

Figure 6.24: Effect of protein kinase inhibitors \textit{SRPIN340, TG003} and \textit{INDY} on the \textit{HER2}\textsubscript{ATP} alternative splice variant in BT-20 cells 48 hours after treatment…. 171

Figure 6.25: Effect of Cobalt chloride treatment on \textit{HIF1-\textalpha} gene in SKBR3 cells 24 hours after treatment……………………………………………………………………………………………………. 173

Figure 6.26: Effect of Cobalt chloride treatment on \textit{HIF1-\textalpha} gene in SKBR3 cells 48 hours after treatment…… 174

Figure 6.27: Effect of Cobalt Chloride treatment on the wild-type \textit{HER2} in SKBR3 cells 24 hours after treatment…… 175
Figure 6.28: Effect of Cobalt Chloride treatment on the HER2ΔECD alternative splice variant in SKBR3 cells 24 hours after treatment... 175

Figure 6.29: Effect of Cobalt Chloride treatment on the HER2Δ16 alternative splice variant in SKBR3 cells 24 hours after treatment... 176

Figure 6.30: Effect of Cobalt Chloride treatment on the HER2ΔATP alternative splice variant in SKBR3 cells 24 hours after treatment... 176

Figure 6.31: Effect of Cobalt Chloride treatment on the wild-type HER2 in SKBR3 cells 48 hours after treatment ... 177

Figure 6.32: Effect of Cobalt Chloride treatment on the HER2ΔECD alternative splice variant in SKBR3 cells 48 hours after treatment... 177

Figure 6.33: Effect of Cobalt Chloride treatment on the HER2Δ16 alternative splice variant in SKBR3 cells 48 hours after treatment... 178

Figure 6.34: Effect of Cobalt Chloride treatment on the HER2ΔATP alternative splice variant in SKBR3 cells 48 hours after treatment... 178

Figure 6.35: Knockdown of SRPK1 mRNA in MDA-MB-453 cells after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube... 180

Figure 6.36: Knockdown of SRPK1 mRNA in MDA-MB-453 cells after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube... 181

Figure 6.37: Knockdown of SRSF1 mRNA in MDA-MB-453 cells after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube... 181

Figure 6.38: Knockdown of SRSF1 mRNA in MDA-MB-453 cells after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube... 182
Figure 6.39: Western blot of SRPK1 and SRSF1 in MDA-MD-453 cells showing, 0, 24 and 48 hours post transfection. ... 182

Figure 6.40: Effect of knockdown on wild-type HER2 mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 184

Figure 6.41: Effect of knockdown on HER2ΔECD mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 184

Figure 6.42: Effect of knockdown on HER2Δ16 mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 185

Figure 6.43: Effect of knockdown on HER2ΔATP mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 185

Figure 6.44: Effect of knockdown on wild-type HER2 mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 186

Figure 6.45: Effect of knockdown on HER2ΔECD mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 186

Figure 6.46: Effect of knockdown on HER2Δ16 mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 187

Figure 6.47: Effect of knockdown on HER2ΔATP mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors... 187
Figure 6.48: Knockdown of SRPK1 mRNA in SKBR3 cell lines after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. ... 188

Figure 6.49: Knockdown of SRPK1 mRNA in SKBR3 cell lines after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. ... 189

Figure 6.50: Knockdown of SRSF1 mRNA in SKBR3 cell lines after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. ... 189

Figure 6.51: Knockdown of SRSF1 mRNA in SKBR3 cell lines after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. ... 190

Figure 6.52: Effect of knockdown on wild-type HER2 mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. ... 192

Figure 6.53: Effect of knockdown on HER2∆ECD mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. ... 192

Figure 6.54: Effect of knockdown on HER2∆16 mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. ... 193

Figure 6.55: Effect of knockdown on HER2∆ATP mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. ... 193

Figure 6.56: Effect of knockdown on wild-type HER2 mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. ... 194
Figure 6.57: Effect of knockdown on $HER2^{∆ECD}$ mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to $SRPK1$ and $SRSF1$ splice factors.. 194

Figure 6.58: Effect of knockdown on $HER2^{∆16}$ mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to $SRPK1$ and $SRSF1$ splice factors.. 195

Figure 6.59: Effect of knockdown on $HER2^{∆ATP}$ mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to $SRPK1$ and $SRSF1$ splice factors.. 195

Figure A 1: Sequence analysis of the top band amplified using primers E12F + E 15R.. 226

Figure A 2: Sequence analysis of the middle band amplified using primers E12F + E 15R.. 226

Figure A 3: Sequence showing the top band amplified using primers E15F + E 19R. .. 227

Figure A 4: Sequence showing the lower band amplified using primers E15F + E 19R.. 227

Figure A 5: Sequence showing the top band amplified using primers NP1+NP2... .. 227

Figure A 6: Sequence showing the top band amplified using primers NP1+NP2... .. 228

Figure A 7: Sequence showing the top band amplified using primers NP5+NP6... .. 228

Figure A 8: Sequence showing the top band amplified using primers NP5+NP6... .. 228
Figure A 9: PSIPRED output showing the secondary structure of the HER2 protein aligned with the amino acid sequenceructures are also indicated by lettering: H – alpha helix, E -Beta sheet and C -coils. ... 251

Figure A 10: pGEM-T Easy Vector map... 252
ABSTRACT

The Human Epidermal Growth Factor Receptor 2 (HER2) is an oncogene expressed in 25-30% of invasive breast cancers. The HER2 gene encodes an 185kDa transmembrane protein with tyrosine kinase activity. Gene amplification or protein expression of HER2 is a predictor of poor prognosis in women with breast cancer, and also indicates a favourable response to Trastuzumab (Herceptin) therapy, or a combinational therapy comprising Herceptin plus chemotherapy. However, resistance to Trastuzumab remains the case in approximately 50% of HER2 amplified/overexpressing tumours. Understanding the molecular mechanisms of Trastuzumab resistance is critical in the treatment of patients whose breast cancers express this aggressive disease phenotype. In this study, it is postulated that the abnormal generation of mRNA splice variants may be responsible for the continued tumour growth and progression.

The aim of this study is to investigate the expression of alternative splice variants in invasive breast cancer, and to increase our understanding of the regulation of HER2 and HER2 splice variants in invasive breast cancer.

The coding region of HER2 cDNA was PCR amplified in HER2 positive cell lines (SKOV-3, SKBR-3, and MDA-MB-453). The regulation of HER2 expression was investigated by siRNA silencing of the splice factor SRSF1 and its phosphorylating gene SRPK1. The role of hypoxia and the inhibition of SRPK1 via SRPIN340 were also investigated for its effects of HER2 expression in cell lines. Human cancer tissues known to be positive for HER2 were tested for the expression of alternative splice variants of HER2.

RT-PCR results reveal new alternative splice variants in invasive breast cancer cells. These new alternative splice variants of HER2 have also been detected in HER2-positive breast cancer samples. Furthermore, the splice factor SRPK1 and SRSF1 have shown regulatory effects on the expression of HER2 in HER2-positive cell line MDA-MB-453.

This study identifies for the first time two novel splice variants with deletions in the transmembrane and kinase domains of the HER2 gene, both with very distinct functional and structural differences. These findings conclude that alternative splicing plays a crucial role in the regulation of HER2 expression, and possibly in the response of breast cancer patients to current targeted HER2 therapies.
CHAPTER 1. GENERAL INTRODUCTION

1.1 Breast Cancer

Breast cancer is the most common form of cancer in women worldwide, accounting for approximately 16% of all cancers in women (World Health Organisation, 2010). The WHO statistics for breast cancer estimate that nearly 1.7 million women were diagnosed of breast cancer in 2012 and over 400,000 women died from breast cancer worldwide. In the UK, over 49,936 new cases of breast cancer were diagnosed in 2010, with approximately 11,600 patients dying from the disease (Cancer Research UK, 2010). A study of breast cancer cases reported between 2002 and 2006 by Cancer Research, UK showed that based on ethnicity, the incidence of breast cancer in women in the UK is significantly higher in white women (71% incidence rate). This rate is much lower in Asian, Black, and mixed ethnicities (1.4%, 0.14%, and 0.2%, respectively). Studies also show that breast cancer in black and Asian women tend to be have more aggressive phenotypes, and are mostly triple negative (ER-, PR- and HER2-), while white women tend to present a less aggressive phenotype. These differences may be due to differences in genetic predispositions or variations in lifestyle patterns (Anon, 2013).

Breast cancer is caused by malignant tumours arising within the breast epithelia. The progression of breast cancer is believed to be a result of various aberrant transformations which abnormally lead to changes in the breast epithelial cells (Sasso et al., 2011). A number of risk factors have been implicated in the incidence of breast
cancer. Research has shown that the risk of developing breast cancer increases significantly with increase in age (Key et al., 2011; Parkin, Boyd & Walker, 2011). Other risk factors include the use of oestrogen-progesterone contraceptives, excessive alcohol intake, tobacco smoking, diet, and mutations in the BRCA1/BRCA2 genes (Eliassen et al., 2006; Key et al., 2011). Breast cancer is not a single disease, but comprises various subtypes which vary in morphology, prognostic profiles, molecular entities and clinical outcomes (Jackson et al., 2013; Eroles et al., 2012). Prognostic factors for breast cancer include tumour grade, histological type, tumour size, lymph node involvement, distant metastasis, expression of steroid and growth factor receptors, oestrogen-inducible genes e.g Cathepsin-D, proto-oncogenes e.g. HER2, mutations in certain genes, e.g. TP53 (Sørlie et al., 2001). Atypical hyperplasia in breast epithelia may lead to ductal or lobular carcinomas in situ; where malignant cells remain in the ducts or lobules respectively, or may lead to invasive ductal or lobular carcinomas; where they become invasive and the carcinoma cells penetrate the basement membrane of the breast epithelia, and spread into surrounding stroma, skin or muscles, or metastasize to surrounding lymph nodes or distant tissues such as the brain, liver or bone (Jackson et al., 2013). In addition, the overexpression or amplification of certain biomarkers such as the Oestrogen Receptor (ER), the Progesterone Receptor (PR), and the Human Epidermal Growth Factor Receptor 2 (HER2/neu/c-erbB-2) is also important in determining the prognosis and treatment of breast cancer (Ciocca et al., 2006).
1.2 Classification of breast cancers

In the past few decades, research into the biology of breast cancer has revolutionised with the focus on new methods of understanding the expression, regulation and function of critical signalling pathways active in the incidence and progression of breast cancers (Eroles et al., 2012; Alvarez & Hortobagyi, 2013). The cellular and molecular heterogeneity of breast cancer contributes to it being a highly complex disease; certain prognostic values are limited in the information that can be obtained about the biology of the disease. Therefore the parameters used to provide prognostic profiles are not self-sufficient in adequately predicting patient outcome in many cases of breast cancer. The model of individualised treatment (based on individual molecular profiles of different patients) has gained much support from the cancer research community, and has led to the identification of different subgroups of patients and the development of various targeted therapies for breast cancer patients (Zagozdzon, Gallagher & Crown, 2011). Examples of these targeted therapies include the successful use of hormonal therapy for women with hormone-sensitive tumour subtypes, and the use of anti-human epidermal growth factor receptor 2 therapies for women with Human Epidermal Growth Factor 2 (HER2)- overexpressing tumours (Alvarez & Hortobagyi, 2013).

New classifications of breast cancers have been proposed with the aim of giving potentially more significant prognostic information and providing guides for treatment options for individual subtypes (Boyle, 2012). Studies have focused on classifying breast cancers based on a combination of changes in gene expression microarrays and
immunohistochemical subtypes, resulting in breast cancers being classified into six distinct phenotypical subtypes (Table 1.1)

1.2.1 Luminal A

The luminal A subtype represents 50-60% of breast cancer subtypes, and based on its histological profile, tumours in this subtype are mostly lobular carcinomas in-situ and infiltrating lobular carcinomas (Eroles et al., 2012). The luminal A subtype is immunohistochemically ER positive and/or PR positive, and HER2 negative, and is known to have a good prognostic outcome (Eroles et al., 2012; Boyle, 2012; Li et al., 2013). Treatment is mainly based on hormonal receptor modulators such as Tamoxifen (Eroles et al., 2012).

1.2.2 Luminal B

The luminal B subtype represents 10-20% of all breast cancers and is a more aggressive phenotype compared to the luminal A subtype (Eroles et al., 2012). Like the Luminal A subgroup, Luminal B breast cancers are ER positive and/or PR positive. However, this subtype is identified as a tumour subgroup with poorer patient outcome compared to the luminal A subtype, due to the increased expression of proliferation genes such as MKI67, Cyclin B1 and oncogenes such as HER2 (Boyle, 2012; Eroles et al., 2012). The luminal B subtype is also characterised by higher histological grade. In combination with tamoxifen treatment, patients in this subgroup respond well to neoadjuvant chemotherapy (Eroles et al., 2012).
1.2.3 HER2 overexpressing

This molecular subtype accounts for 10-25% of all breast cancers (Eroles et al., 2012). HER2 overexpressing cancers are characterised by the absence of ER and PR, and a high expression of the HER2 gene and also exhibit an overexpression of genes associated with cellular proliferation (Boyle, 2012; Eroles et al., 2012; Li et al., 2013). HER2 overexpressing tumours are histologically high grade tumours and have unfavourable prognostic implications. Treatment is mainly with anti-HER2 therapies and neoadjuvant chemotherapy (Eroles et al., 2012).

1.2.4 Basal-like

This subtype represents 10-20% of all breast cancers. Basal-like tumours are mainly infiltrating ductal carcinomas with high lymph node involvement and metastatic potential (Eroles et al., 2012). The most important characteristic of this tumour subtype is the absence of all three breast cancer biomarkers ER, PR and HER2 (Boyle, 2012; Eroles et al., 2012). This is why they are also often referred to as triple negative breast cancers (TNBC). Triple-negative breast basal-like cancers are also positive for EGFR and CK5/6 (Li et al., 2013). Basal-like cancers are usually histologically high grade tumours, and treatment is usually with chemotherapy. Poly-ADP ribose- polymerase-1 (PARP-1) inhibitors are currently being developed to treat this subset of tumours, but are currently only being used in clinical trials (Eroles et al., 2012).
1.2.5 Normal breast-like

About 5-10% of breast carcinomas have been classified under the normal breast-like subtype (Eroles et al., 2012). Normal breast-like breast cancers are negative for ER, PR and HER2, but unlike the triple-negative breast cancer subtype, are also negative for CK5/6 and EGFR (Eroles et al., 2012). Normal breast-like breast cancers are poorly characterised and are very rare (Sørlie et al., 2001; Eroles et al., 2012). Some studies hypothesize that this subtype is only a technical artefact derived from a high contamination of normal tissue during the preparation of tissue microarrays. It is difficult to establish a clinical significance of the normal breast-like breast cancer subtype due to their rarity (Eroles et al., 2012).

1.2.6 Claudin-low

About 12-14% of breast cancers are found under this subtype (Eroles et al., 2012). The claudin-low breast cancer subtype is characterized by a low expression of certain genes which play a crucial role in the formation of tight junctions and in cell adhesion. Examples of these genes are claudin -3, -4, -7 cingulin, occludin and E-cadherin, hence the name claudin-low (Perou, 2011). This subtype is characterised by a high expression of immune cells. Claudin-low tumours also express a low level of genes which are related to cell proliferation, yet this subtype belongs to a poor prognosis group (Eroles et al., 2012; Perou, 2011). Claudin-low breast tumours are relatively high grade infiltrating ductal carcinomas. Immunohistochemically, Claudin-low tumours are mostly triple negative, and treatment of patients is mainly with neoadjuvant chemotherapy. This new classification of breast cancers is still being researched and
has not yet been fully applied in clinical settings due to a lack of standardization for testing of individual tumours (Eroles et al., 2012).

<table>
<thead>
<tr>
<th>MOLECULAR SUBTYPE</th>
<th>FREQUENCY</th>
<th>ER/PR/HER2 STATUS</th>
<th>HISTOLOGIC GRADE</th>
<th>PROGNOSTIC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal-like</td>
<td>10-20%</td>
<td>ER-, PR-, HER2-</td>
<td>High</td>
<td>Poor</td>
</tr>
<tr>
<td>HER2 overexpressing</td>
<td>10-15%</td>
<td>ER-, PR-, HER2+</td>
<td>High</td>
<td>Poor</td>
</tr>
<tr>
<td>Normal breast-like</td>
<td>5-10%</td>
<td>ER-/+, HER2-</td>
<td>Low</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Luminal A</td>
<td>50-60%</td>
<td>ER+, PR, HER2-</td>
<td>Low</td>
<td>Excellent</td>
</tr>
<tr>
<td>Luminal B</td>
<td>10-20%</td>
<td>ER+/-, PR+/-, HER2-/-</td>
<td>Intermediate/ high</td>
<td>Intermediate/ Poor</td>
</tr>
<tr>
<td>Claudin-low</td>
<td>12-14%</td>
<td>ER-, PR-, HER2-</td>
<td>High</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Table 1.1: Molecular subtypes of HER2 and their characteristic features. Adapted and used with permission from (Eroles et al., 2012).
Figure 1.1 (A) Kaplan–Meier curves of disease-free survival and overall survival based on UNC337 database. Dark blue, luminal A; light blue, luminal B; red, basal-like; pink, HER2-enriched; yellow, Claudin-low. (B) Distribution of ER and HER2 in the different subtypes of breast cancer based on mRNA expression. [Source and permissions: (Eroles et al., 2012)].
1.3 Discovery of the Human Epidermal Growth Factor Receptor 2 (HER2)

The Human Epidermal Growth Factor Receptor 2 (HER2) is a proto-oncogene which belongs to the Human Epidermal Growth Factor Receptor (HER/EGFR) family of transmembrane receptor tyrosine kinases (Dean-Colomb & Esteva, 2008; Normanno et al., 2006). The EGFR family of genes consists of HER1 (EGFR / c-erbB-1), HER2 (c-erbB-2 / verb-B2 / Neu), HER3 (c-erbB-3), and HER4 (c-erbB-4) (Shah & Chen, 2010; Wan, Sazani & Kole, 2009). Aberrant expression or functioning of the epidermal growth factor family has been implicated in the development and evolution of various cancers (Baselga & Swain, 2009). The HER2/Neu oncogene was first characterised in 1981 in experiments using genetically modified mice (Sińczak-Kuta et al., 2007; Siegel et al., 1999). Neu, the rat homologue of HER2, was identified as a transforming gene in transfection experiments using genomic DNA isolated from chemically induced neuroblastoma models (Marchini et al., 2011; Sińczak-Kuta et al., 2007; Siegel et al., 1999; Jackson et al., 2013). Single point mutations in the transmembrane region activate the neu oncogene by converting a valine residue to glutamic acid (Siegel et al., 1999). This mutation in the transmembrane domain results in increased ligand-independent dimerization causing tyrosine kinase activity. The human homolog of the Neu gene (HER2) was identified and isolated due to its homology with the Neu oncogen. ERBB2 is the official name for HER2 provided by the HUGO Gene Nomenclature Committee for the v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 gene (Wolff et al., 2007).
The *HER2* gene is located on the long arm of human chromosome 17 (17q21-q22) and encodes a 185kDa tyrosine kinase receptor (Freudenberg *et al.*, 2009; Nuti *et al.*, 2011) that is constitutively active as a dimer and shares extensive homology with the other three members of the EGFR family (Castiglioni *et al.*, 2006); all Human Epidermal Growth factor receptors have an extracellular ligand-binding domain, a short hydrophobic transmembrane region and a cytoplasmic domain with intrinsic tyrosine kinase catalytic activity (Sińczak-Kuta *et al.*, 2007; Hynes & Lane, 2005) (Figure 1.2).

About 10-25% of human breast carcinomas are positive for *HER2* (Koletsa *et al.*, 2008; Scaltriti *et al.*, 2007). The overexpression or gene amplification of *HER2* has been observed in many other human epithelial cancers including colorectal, ovarian, endometrial, prostate, pancreatic, oral, lung, and gastric carcinomas (Freudenberg *et al.*, 2009; Gebhardt, Zänker & Brandt, 1998; Nuti *et al.*, 2011; Blok *et al.*, 2013; Fuse, 2011), and is known to be associated with an unfavourable prognosis. *HER2* positivity in breast cancers is associated with a more aggressive tumour phenotype with increased cell proliferation and metastatic potential (Dean-Colomb & Esteva, 2008), earlier recurrence, significantly lower disease-free and overall survival rates, shorter time to relapse, and overall poor prognosis (Doherty *et al.*, 1999a; Freudenberg *et al.*, 2009; Shah & Chen, 2010).

1.4 *HER2* signalling pathways

The Human Epidermal Growth Factor Receptor (HER/EGFR) tyrosine kinase family of transmembrane proteins are activated following binding with peptide growth factors
of the EGF-family of proteins (Normanno et al., 2006). The EGFRs play a crucial role in normal physiology and evidence also suggests that the EGFR family of receptors is involved in the pathogenesis and progression of different carcinoma types (Normanno et al., 2006; Hynes & MacDonald, 2009). Epidermal growth factor receptors also play a role in embryogenesis, and are important factors in tissue remodelling and renewal throughout adult life. Epidermal Growth Factor Receptors 1 and 2 (EGFRs 1 & 2) in particular are mutated in many epithelial cancers, and clinical studies suggest that they play roles in the development and progression of various cancer types (Hynes & MacDonald, 2009). Thirteen cognate ligands have been characterized that bind to the HER receptors, with the exception of HER2 which has no known ligand. The cellular mechanism of HER2 activation is therefore not completely understood (Shah & Chen, 2010). The HER proteins remain in an inactive form, assuming a tethered conformation until they are activated on ligand binding, but HER2 remains constitutively active and can therefore induce transformation in a ligand-independent way (Alvarez & Hortobagyi, 2013; Nuti et al., 2011). Upon ligand binding to the extracellular domain, homo- or heterodimerization of the HER2 receptor with itself or other members of the EGFR family leads to phosphorylation of residues from the intracellular domain of the HER2 receptor and consequent activation of the HER2 protein resulting in the recruitment of signalling molecules from the cytoplasm and the activation of several signalling pathways (Alvarez & Hortobagyi, 2013). Downstream of HER2, phosphorylation results in the recruitment of signalling molecules from the cytoplasm and the induction of several potent intracellular signalling pathways which result in cell differentiation, cell migration, signal transduction, cell motility, cell adhesion, increased cell proliferation, protease expression and activation, and a cascade of other...
events which lead to functional changes in both embryonic and adult tissues (Zagozdzon, Gallagher & Crown, 2011; Gebhardt, Zänker & Brandt, 1998; Nuti et al., 2011; Shah & Chen, 2010). The downstream signalling pathway which is activated following HER2 dimerization is significantly influenced by the pattern of dimerization (Tai, Mahato & Cheng, 2010). Different signalling cascades can potentially be initiated depending on the dimeric combination of HER2 with itself or other members of the HER family.

Figure 1.2 Schematic representation of HER2. HER2 (purple) can form heterodimers as pictured with EGFR (orange), HER3 (red), as well as HER4 (not pictured). EGFR (orange) assumes a tethered conformation in the absence of a ligand. HER2 remains active and is naturally ready for ligand dimerization.

Two of the most studied downstream signalling pathways in EGFR signalling are the phosphoinositide-3-kinase (PI3K/AKT) and the mitogen activated protein kinase (MAPK) cascades.
1.4.1. Phosphoinositide-3-kinase (PI3K/AKT) cascade

The PI3K/AKT pathway is arguably the most significant pathway activated downstream of HER2 phosphorylation in cancer. The PI3K/AKT lipid kinase activity is stimulated when HER2 signals in conjunction with HER3. Apart from the HER2 + HER3 heterodimer, it is also possible to induce the PI3K/AKT cascade by tyrosine-phosphorylated HER3 homodimerization. This is because HER3 possesses numerous binding domains which can interact with the regulatory subunit p85 of PI3K (Tai, Mahato & Cheng, 2010; Hynes & MacDonald, 2009). Homodimers containing HER3 also have the potential to activate the AKT kinase via the PI3K lipid kinase. At the cell membrane, Phosphatidylinositol (3,4,5)-trisphosphate (PIP₃)-bound AKT becomes phosphorylated, resulting in the activation of the mechanistic target of rapamycin (mTOR) (Emde, Köstler & Yarden, 2012; Pohlmann, Mayer & Mernaugh, 2009). The activation of mTOR induces several intracellular functions, interactions with transcription factors, activation of metabolic pathways, apoptosis and angiogenesis, which result in cell proliferation, invasion and survival (Pohlmann, Mayer & Mernaugh, 2009). Following the activation of AKT, PIP₃ is dephosphorylated by the tumour suppressor gene phosphatase and tensin homolog (PTEN) to PIP₂, which makes PTEN a negative regulator of the PI3K/AKT signalling cascade (Figure 1.3). PTEN is a protein encoded by the PTEN gene, and functions as a tumour suppressor gene (Nahta & O’Regan, 2010). PTEN is important in the PI3K/AKT pathway because it inhibits the downstream signalling of P13K (Saal et al., 2008). In normal signalling of the EGFR receptors, the PI3K/AKT pathway induces cell survival and inhibits apoptosis (Jackson et al., 2013).
1.4.2. Mitogen Activated Protein Kinase (MAPK) cascade

This is also known as the RAS/RAF/MEK/MAPK pathway. Unlike the PI3K/AKT pathway, the MAPK pathway can be activated by all dimerizations involving HER2 (HER1/HER2, HER2/HER2, HER2/HER3, and HER2/HER4) (Tai, Mahato & Cheng, 2010). In this cascade, the adaptor protein known as Growth Factor Receptor Bound Protein 2 (GRB2) which recognises tyrosine-phosphorylated sites on the activated receptor, binds to the guanine nucleotide exchange factor Son of Sevenless (SOS). The GRB2/SOS complex binding to the receptor activates SOS, resulting in a loss of Guanosine Diphosphate (GPD) from inactive RAS. Free RAS is then activated by binding to Guanosine-5’-Triphosphate (GTP). RAS/GTP complex then binds to activate Raf-1
(MAP3K). Raf-1 can then activate MEK1 (MAP2K1) and MEK2 (MAP2K2) which are essential for downstream signalling of RAS and Raf-1. The activation of MEK results in the phosphorylation of ERK (Figure 1.4). ERK activation is crucial to certain physiological functions in the cell, including cell cycle control, differentiation, migration, apoptosis and angiogenesis (Pohlmann, Mayer & Mernaugh, 2009). The pathway also serves in stimulating cell proliferation (Jackson et al., 2013).

Figure 1.4 Schematic representation of the RAS/RAF/MEK/MAPK cascade. The MAPK pathway can be activated by dimerization of HER2 with HER1, HER3 or HER4.
1.5 **HER2 as a prognostic factor in breast cancer**

Gene amplification of **HER2** is the main mechanism by which abnormally high levels of the 185kDa glycoprotein are found in **HER2** overexpressed tumours (Wolff *et al.*, 2007). It is now recommended that the **HER2** status is determined for all invasive breast cancer patients (Dean-Colomb & Esteva, 2008). Determination of **HER2** status is important for a number of reasons. **HER2** positivity is associated with poor prognosis in patients with early breast cancer who do not receive any adjuvant systemic therapy. This makes **HER2** status a crucial factor in determining the type of treatment to administer to patients, particularly in cases where adjuvant therapy might be beneficial (Wolff *et al.*, 2007). **HER2** positivity is known to be associated with relative resistance to endocrine therapy, e.g. tamoxifen. **HER2** status has also been recently associated with resistance or sensitivity to various chemotherapeutic agents such as *nonanthracycline* and *nontaxane*. Conversely, studies have shown that **HER2** positivity predicts a favourable response to *anthracycline*-containing chemotherapy regimens. **HER2** status may also play a role in predicting response to paclitaxel (Wolff *et al.*, 2007). More importantly, **HER2** positivity is known to predict a favourable response to *Trastuzumab* (Herceptin®, Genentech, Inc., South San Francisco, CA, USA; Hoffmann-La Roche Ltd., Basel, Switzerland), a humanised monoclonal antibody that targets the extracellular domain of **HER2** and inhibits tumour growth in vitro and in vivo (Saini *et al.*, 2011).
1.6 Testing for HER2 status

Studies have shown a good correlation in the protein overexpression, gene amplification and mRNA levels of HER2. This allows for reliable testing for HER2 status in cancer cells by immunistochemistry and FISH. These two methods are currently recommended for testing HER2 status in breast cancer patients (Vogel, 2010; Wolff et al., 2007).

1.6.1. Testing for HER2 status at the protein level

1.6.1.1. Immunohistochemistry

Immunohistochemistry is currently the most widely used primary technique in the determination of HER2 status (Moelans et al., 2011). The use of immunohistochemical methods in testing for HER2 in breast cancer allows tumours to be classified based on semi-quantitative methods of evaluation of HER2 protein expression, such as the mouse monoclonal antibody clone CB11 (Novocastra Laboratories, Newcastle upon Tyne, England), the Rabbit monoclonal antibody clone SP3 (LabVision corporation, Runcorn, England), the Rabbit monoclonal antibody clone 4D5 (Ventana Medical Systems, Tuscon, Arizona), and the HercepTest (Dako, Glostrup, Denmark) which is based on the DAKO A0485 rabbit polyclonal antibody (Rhodes et al., 2010; Vogel, 2010; Wolff et al., 2007; van der Vegt et al., 2009). Tumours are graded 0 to 3+ using the HercepTest score, an algorithm by which tumours are scored based on staining intensity and percentage of tumour cells stained. The HercepTest guidelines are used
to grade tumours as 0 (negative), 1+ (weak and incomplete membrane staining), 2+ (complete non-uniform membrane staining or with a weak intensity in more than 10% of the tumour cells) or 3+ (complete strong-positive membrane staining in more than 30% of tumour cells) (Moelans et al., 2011). Patients with IHC scores of 0 and 1+ are considered negative for HER2 and therefore not eligible for Trastuzumab therapy. Tumours with IHC scores of 2+ are considered to be equivocal cases, as several studies have shown that such tumours can be found to have HER2 gene amplification. Patients with an IHC score of 3+ are considered to be a definite HER2 positivity, and patients in this group are considered eligible for Trastuzumab treatment (Moelans et al., 2011).

The use of immunohistochemistry in testing for HER2 status in patients is however laden with a number of drawbacks. Quality control and standardization of tests is critical in eliminating inter-observer variability. In contrast to FISH, IHC is prone to staining artefacts which may be caused by inappropriate tissue handling. Subjective interpretation of the intensity of membrane staining may also pose a major obstacle in the interpretation of IHC results (Moelans et al., 2011; Vogel, 2010). In cases with equivocal IHC 2+ score, determination of treatment approach is usually after further analysis of the tumour by other methods of testing such as Fluorescence in situ Hybridization (FISH) and chromogenic in situ hybridization (CISH).

1.6.1.2. The Enzyme-Linked Immunosorbant Assay (ELISA)

The Enzyme-Linked Immunosorbant Assay (ELISA) is used to measure protein levels in serum. The use of ELISA in testing for HER2 status measures the amount of HER2 in serum extracellular domain. Matrix metalloproteinases cleaved to the HER2 receptor
protein can be detected in the extracellular domain that is released into the circulation. Elevated serum ECD levels (≥ 15ng/ml) is associated with poor prognosis, progressive metastasis, and a poor response to treatment. However, not all patients with HER2 positive breast cancers appear to have elevated serum ECD levels, therefore the use of this method of testing in determination of treatment is not recommended in clinical settings (Moelans et al., 2011).

1.6.2. Testing for HER2 status at the DNA level

1.6.2.1. Fluorescence In Situ Hybridization (FISH)

Fluorescence in situ hybridization is a cytogenetic technique in which fluorescently labelled DNA probes are used to detect and visualise a specific DNA sequence with which they share a high degree of complementarity. Dual-colour FISH (Vysis Pathvysion, DAKO PharmDx) is the FDA-approved FISH testing kit, which hybridizes complementary HER2 DNA on slides, and the resulting probes are visualised using a fluorescence microscope. In the current guidelines for HER2 testing by FISH, a HER2 gene signals to chromosome 17 signals ratio (FISH ratio) of ≤2:2 is considered a normal HER2 expression (Wolff et al., 2007). A FISH ratio of ≥2.2 counted in a minimum of 20 tumour cells, and in at least 2 invasive tumour areas, is considered positive for gene amplification. In equivocal cases of FISH assay, it is recommended that additional cells are counted or the test is repeated. In some cases, an IHC test may be required to confirm true equivocality. Due to the complexity of the FISH technique, and the fact that the scoring process is very time consuming, it is not a very practical primary
screening tool. In many clinical settings, the FISH technique is only used to determine treatment decisions in patients with equivocal IHC 2+ score (Moelans et al., 2011).

1.6.2.2. Chromogenic In Situ Hybridization (CISH)

The Chromogenic in situ hybridization technique is a method of HER2 testing developed by Tanner et al. as an alternative to FISH. CISH was approved by the FDA in 2008. CISH detects the HER2 gene copies using a conventional immunoperoxidase reaction. This method of visualization of HER2 allows scoring with a conventional light microscope. Using this method, a scoring system has been established where an average copy number of >10 or with big clusters in more than 50% of the tumour nuclei, is considered HER2 amplification (Tanner et al., 2000). A minimum of 30 tumour cells are counted. The CISH method has also been shown to correlate well with FISH and IHC methods (Moelans et al., 2011). Most available CISH assays only score the HER2 copy number, but recently, a new dual-colour CISH (Dako duo CISH kit) assay has been developed which allows for the detection of a HER2 probe (red) and a chromosome 17 probe (blue), therefore allowing for the assessment of the HER2 gene ratio relative to chromosome 17 signals (Moelans et al., 2011).

1.6.2.3. Silver In Situ Hybridization (SISH)

The SISH technique is used for determination of HER2 gene expression (Jacquemier et al., 2013). SISH combines the accuracy of the FISH technique and the morphological control of the IHC technique, with the use of opaque silver, instead of fluorescent spot-
like signals. The resulting signal is a permanent result that can be visualised by an ordinary light microscope. The SISH technique is relatively new, and though studies have shown a high concordance between FISH and CISH techniques, further independent validation is recommended before the SISH test can be used in routine clinical settings (Gómez-Martin et al., 2012; Jacquemier et al., 2013; Shousha et al., 2009).

1.6.3. Testing for HER2 status at the RNA level

1.6.3.1. Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Due to the relative instability of RNA compared to DNA, and the severe degradation caused by cross-linking during fixation, RNA samples isolated from Formalin-fixed paraffin-embedded (FFPE) samples, the qRT-PCR method is not often used in HER2 testing in clinical settings. This method, however, has been shown to correlate well with IHC and FISH techniques, even in RNA templates isolated from FFPE material. A very important use of qRT-PCR in cancer testing is the Oncotype DX assay (Genomic health, USA), a method by which the likelihood of disease recurrence in women with breast cancer is predicted. A recurrence score is obtained after analysing tumour cells using a panel of 21 genes, which include HER2, ER and PR (Moelans et al., 2011).

The optimal method of testing for HER2 in breast cancer remains controversial despite the development of various reliable tests. Most organisations rely on HER2 3+
positivity by immunohistochemistry as the preferred method for selecting patients for Trastuzumab therapy. (Vogel, 2010). The IHC technique has been shown to correlate well with the FISH technique, with only equivocal cases needing confirmatory tests, usually carried out by FISH (Meijer et al., 2011). Therefore screening of newly diagnosed breast cancers is mostly performed by immunohistochemistry (Vogel, 2010). Accurate testing for HER2 is important as false positive tests could lead to the administration of an expensive (£25,000 - £35,000 per patient per year) and ineffective treatment with very serious side effects; due to the cardiotoxicity of the drug, some patients who undergo Trastuzumab treatment are likely to develop cardiac dysfunction (Minami, Matsumoto & Horiuchi, 2010; Moelans et al., 2011). A false negative test on the other hand, would deprive the patient of an important therapeutic option (Moelans et al., 2011).

1.7 Therapies in HER2 positive cancer

The current therapy for breast cancer patients with early and metastatic disease, involves the use of multiple agents. Endocrine therapies are administered to patients with hormone receptor-positive disease, anti-HER2 therapies for HER2-overespressing tumours, and the poly-ADP-ribose polymerase (PARP) inhibitors are currently being developed in clinical trials, to treat patients with breast cancer gene 1 or 2 (BRCA1/2)-mutated tumours (Awada, Bozovic-Spasojevic & Chow, 2012; Eroles et al., 2012). Accurate assessment of the HER2 status of all invasive ductal breast carcinomas (IDC) is essential in determining the appropriate treatment regimen for individual cases. The inhibition of growth factor receptors can be achieved either by the use of monoclonal
antibodies which bind to the extracellular epitopes found in tumour cells, or the use of small tyrosine kinase inhibitors (TKIs) directed to extracellular epitopes and intracellular signalling pathways (Alvarez & Hortobagyi, 2013). These two complementary approaches have become part of the standard of care for patients with HER2 positive breast cancer. A number of chemotherapeutic targets have been approved by the US Food and Drug agency (FDA) for use in the treatment of HER2-positive breast cancer.

1.7.1. Trastuzumab treatment for patients with HER2 positive invasive breast cancer

Perhaps the most important reason for determining HER2 status in patients is for the appropriate administration of the humanized anti-HER2 monoclonal antibody therapy Trastuzumab to patients with invasive breast cancer that overexpress HER2 (Bartlett et al., 2001; Vogel, 2010). Trastuzumab was approved for use in September 1998, in the treatment of metastatic HER2-positive breast cancer. In January 2008, Trastuzumab was approved for use as first-line treatment for patients with early stage HER2-positive breast cancer (Piccart-Gebhart et al., 2005; Romond et al., 2005). More recently, Trastuzumab is also used in in the treatment of metastatic, unresectable HER2-positive gastric and gastro-oesophageal junction cancer (Bang et al., 2010). Trastuzumab is also administered in both metastatic and adjuvant settings and is currently administered with chemotherapies involving paclitaxel and docetaxel which results in increased time to disease progression, and overall survival compared with Herceptin therapy alone (Kang et al., 2008).
The *Trastuzumab* antibody consists of two antigen-specific sites that bind to the extracellular domain of *HER2*, resulting in the inhibition of *HER2* and apoptosis of tumour cells overexpressing *HER2* (Vogel, 2010; Geyer *et al.*, 2006), and the inhibition of the intracellular pathways involved in *HER2* activation (Stern, 2012) (Figure 1.5). The exact mechanism by which *Trastuzumab* exerts its antitumor activity has still not been fully elucidated. Several possible mechanisms have been proposed; these include the activation of antibody-dependent cellular cytotoxicity, inhibition of angiogenesis, blockage of proteolytic cleavage of the *HER2* extracellular domain and consequent downregulation of *HER2* receptors, disruption of downstream proliferative pathways, inhibition of cell cycle progression, inhibition of signal transduction in the intracellular domain of *HER2*, and the inhibition of repair of DNA damage caused by cancer treatment (Spector & Blackwell, 2009; Awada, Bozovic-Spasojevic & Chow, 2012).

The Initial approval of *Trastuzumab* in the treatment of *HER2* overexpressing breast cancers, was based on studies in patients with metastatic breast cancer (Dean-Colomb & Esteva, 2008). A phase III clinical trial by Slamon *et al.* (2001) compared the use of *Trastuzumab* plus various chemotherapeutic agents as a first-line treatment, with the use of chemotherapy alone in metastatic breast cancer. This study found that there was a significant improvement in overall survival (25.1 vs. 20.3 months) and overall response rate (50 vs. 32%), and a significantly longer median progression-free survival (6.9 vs. 3.0 months). These findings resulted in a 62% reduction in the risk of disease progression (Slamon *et al.*, 2001). Based on the results of the study, *Trastuzumab* was approved with paclitaxel as a first-line treatment of *HER2*-overexpressing metastatic breast cancer (Alvarez & Hortobagyi, 2013). Several independent randomized studies
have also shown that the addition of *Trastuzumab* to chemotherapy reduced the rate of recurrence by 50% in women with *HER2*-positive early breast cancer. In 2005, four clinical trials in patients with *HER2* overexpressing early breast cancer compared the effects administration of *Trastuzumab* as an adjuvant versus observation. The results showed that the recurrence rate of patients was reduced by a third, and the mortality rate was reduced by half (Wolff *et al.*, 2007). On the basis of these results, the UK National Institute for Health and Care Excellence (NICE) and the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) approved the adjuvant use of *Trastuzumab* with chemotherapy in patients with *HER2* overexpressing early breast cancer (Pivot *et al.*, 2013; Wolff *et al.*, 2007; Emde, Köstler & Yarden, 2012; Goddard *et al.*, 2012).

1.7.2. *Lapatinib*

In March 2007, *Lapatinib* (Tykerb, GlaxoSmithKline, Philadelphia, PA, USA) was approved for use in the metastatic *HER2*-positive breast cancers. *Lapatinib* is a small molecule reversible dual EGFR/HER1 and *HER2* tyrosine kinase inhibitor administered in combination with capecitabine for the treatment of advanced metastatic *HER2*-positive breast cancers where the patients had been given prior therapy including anthracycine, a taxane, and *Trastuzumab*, and where these therapies have failed (Geyer *et al.*, 2006; Awada, Bozovic-Spasojevic & Chow, 2012; Wolff *et al.*, 2007). In January 2010, *Lapatinib*, in combination with Letrozole (Femara®), was also approved for the treatment of *HER2*-positive breast cancer patients whose tumours were also hormone receptor-positive, and for whom hormonal therapy is indicated (Alvarez & Hortobagyi, 2013). *Lapatinib* binds to the intracellular tyrosine kinase domains of HER1
and HER2, and selectively inhibits HER1 or HER2 overexpressing tumour cells, resulting in the inhibition of phosphorylation, and the inhibition of downstream pathways which lead to cell proliferation and cell survival (Awada, Bozovic-Spasojevic & Chow, 2012) (figure 1.5).

1.7.3. Pertuzumab

In June 2012, pertuzumab was approved for use in combination with Trastuzumab and docetaxel, in the treatment of patients with HER2 positive breast cancer who had not received prior HER2 therapy or chemotherapy for metastatic disease (Baselga et al., 2012).

Pertuzumab is an anti HER2 antibody that binds to subdomain II of the HER2 extracellular domain (Franklin et al., 2004). Pertuzumab functions in the prevention of HER2 dimerization with ligand-activated HER2 receptors, mostly HER3 (Baselga & Swain, 2009; Agus et al., 2002). Trastuzumab is directed towards ligand-independent HER2 signalling (HER2/HER2 interactions), while Pertuzumab interferes with activation of HER2 via ligand-dependent HER3-mediated signalling (Scheuer et al., 2009) (figure 1.5). A combinatorial therapy involving Trastuzumab and pertuzumab in HER2 overexpressed breast cancer has been associated with significant antitumor activity (Scheuer et al., 2009; Nahta, Hung & Esteva, 2004).

Other chemotherapeutic agents including Trastuzumab Emtansine (T-DM1), and Neratinib, have shown significant activity in the inhibition of cell membrane receptors
in clinical trials, but have not yet been approved for clinical practice (Alvarez & Hortobagyi, 2013).

Figure 1.5 Schematic representation of the mechanisms of action of current therapies for HER2 overexpressing breast cancer. Downstream signalling is inhibited by monoclonal antibodies Trastuzumab and pertuzumab, which inhibit dimerization by binding to subdomains IV and II of HER receptors respectively. Lapatinib, a small-molecule tyrosine kinase inhibitor, inhibits phosphorylation by binding to the intracellular kinase domain of HER2 receptors.
1.8 Challenges and unmet needs in the treatment of HER2 positive breast cancer

Although the administration of Trastuzumab-based treatment has become the standard of care for patients with HER2 positive metastatic breast cancer, for reasons that are unclear, many patients will either not respond to Trastuzumab treatment, or eventually progress despite treatment (Awada, Bozovic-Spasojevic & Chow, 2012; Koletsa et al., 2008). It is estimated that up to 40% of patients with metastatic breast cancer do not respond to Trastuzumab or combinatorial therapies which include Trastuzumab (Awada, Bozovic-Spasojevic & Chow, 2012). Patients who achieve an initial response to Herceptin plus chemotherapy generally acquire resistance within 1 year (Freudenberg et al., 2009; Awada, Bozovic-Spasojevic & Chow, 2012; Kang et al., 2008). As a result, significant efforts have been applied to elucidating the mechanisms underlying Herceptin resistance, and finding other therapies besides Herceptin for the treatment of HER2 positive breast cancer.

Development of resistance to HER2 therapies poses a serious concern, and ultimately results in shorter time to tumour progression, and limited overall survival. There are several mechanisms by which HER2 overexpressing tumour cells may develop resistance to HER2 therapies. Cross-talk between intracellular signalling pathways and redundancy in growth factor receptors have been implicated in the development of resistance in most patients with HER2-positive breast cancer. For example, Trastuzumab may be ineffective in inhibiting PI3K due to lateral activation of the pathway by other members of the HER family (i.e. HER1 and HER3), thereby leading to
continuing cell proliferation (Kerbel, 2009). Alterations in receptor-antibody interactions may lead to resistance, either through mutations in HER2 that disrupt binding, the masking of antigens on the tumour cell surface through glycoproteins such as MUC-4, or the overexpression of truncated isoforms of HER2, e.g. p95 that lacks the extracellular domain, and therefore does not have a Trastuzumab binding site (Sperinde et al., 2010). In addition, mutations in PTEN which result in loss of function, or activating mutations in PI3K, may lead to enhanced phosphorylation and signalling of AKT which is downstream of HER2, therefore bypassing any HER2-directed therapy, and resulting in cellular proliferation of HER2 (Coughlin et al., 2010). Mutations or conditions that lead to the loss of tumour suppressor gene Cyclin-dependent kinase inhibitor 1B (p27) may contribute to Trastuzumab resistance. The phosphorylation of the p27 gene prevents the degradation of Trastuzumab and leads to cell cycle arrest (Bedard, de Azambuja & Cardoso, 2009). The p27 gene is therefore crucial in the efficiency of Trastuzumab via the inhibition of HER2. In addition, the amplification or overexpression of cyclin E will result in increased proliferation and increased tumour growth, which may subsequently result in resistance and decreased sensitivity to Trastuzumab (Scaltriti et al., 2011).

Due to shortcomings with current targeted therapies such as Trastuzumab and Lapatinib, a variety of novel and improved targets are being investigated for the treatment of HER2 positive breast cancer, many of which have the potential to address the unmet needs of current treatment regimens (Awada, Bozovic-Spasojevic & Chow, 2012). Some characteristics of ideal novel targets would include significant antitumor activity, good tolerability, a limited propensity for the development of drug resistance,
good selectivity for the chosen therapeutic targets, potent inhibition of commonly expressed molecular targets, and such treatments would display irreversible binding to its molecular targets, thereby producing longer-lasting effects (Awada, Bozovic-Spasojevic & Chow, 2012). Recently, several agents have been developed which have the potential to inhibit HER2 in breast tumours, either as monotherapy or in combination with other therapies. These novel therapies include the tyrosine kinase inhibitors neratinib (HKI-272) and afatinib (bibw-2992), and the anti-HER2 monoclonal antibodies pertuzumab and Trastuzumab-MCC-DM1 (T-DM1)(Jones & Buzdar, 2009). The use of agents that target molecular pathways such as the Vascular Endothelial Growth Factor (VEGF) receptor, mammalian target of rapamycin (mTOR), PI3 kinase, insulin growth factor receptors (IGFRs), HSP-90 and other important kinases (Awada, Bozovic-Spasojevic & Chow, 2012) may also be useful as alternative targets for HER2 therapy. However, innovative clinical studies using well characterised clinical subjects will be required in order to establish the true clinical value of these potential novel anti-HER2 targets (Awada, Bozovic-Spasojevic & Chow, 2012).

1.9 Alternative Splicing

RNA splicing is a process in the nucleus by which introns are removed from pre-mRNA and exons are ligated together, converting pre-mRNA to mature mRNA (Watson et al., 2008). Some pre-mRNAs in individual genes may be differentially spliced, generating multiple alternative mature mRNA products from a common mRNA precursor, known as isoforms. Alternative splicing is the process by which more than one mRNA is produced by a single pre-mRNA, leading to the production of several structurally
distinct protein isoforms, which can have diverse functions (Garcia-Blanco, 2005). Alternative splicing is a key post-transcriptional mechanism by which the expression of multiple protein products from a single gene can be controlled (Li et al., 2006) and is considered as one of the key generators of proteomic diversity (Ladomery, Harper & Bates, 2007); alternative splicing increases the protein diversity without increasing genome size, and therefore forms one of the most significant components of the complexity of the human genome (Modrek & Lee, 2002). It is estimated that alternative splicing can occur in up to 75% of all human genes (Watson et al., 2008). The number of different variants a given gene can encode by alternative splicing varies from two to thousands. For example, the rat Slo gene encodes a potassium channel which is expressed in neurons, and has the capacity to encode up to 500 alternative transcripts of the gene, and one Drosophila melanogaster gene has the potential to encode up to 38,000 products as a result of alternative splicing (Watson, et al., 2008).

In the majority of human genes, alternative splicing may give rise to transcript variants and/or protein isoforms that can vary distinctly in structure and functional properties (Figure 1.6). For example, an alternative splice variant of VEGF gives rise to multiple protein isoforms, which display either pro-angiogenic or anti-angiogenic activities (Nowak et al., 2008; Ladomery, Harper & Bates, 2007).

Alternative splicing is the most plausible solution for the miscorrelation between the number of genes transcribed in eukaryotic cells and the number of proteins translated in the same signalling pathway (Kim, Goren & Ast, 2008; Pal, Gupta & Davuluri, 2012).
Alternative splicing plays various important roles in the cell, chief of which is to increase the diversity of the proteome and transcriptome by allowing the generation and expression of multiple mRNA products from a single gene. Due to alternative splicing, the coding capacity of the human genome is greatly increased (Tazi, Bakkour & Stamm, 2009), leading to an increased complexity of the transcriptome and proteome (Stamm et al., 2005). This increased complexity of the human genome has clear repercussions for the regulation of gene expression in many organisms and for the balance between human health and disease (Garcia-Blanco, 2005; Stamm et al., 2005). Today, alternative splicing is increasingly linked with the aetiology of cancer (Ladomery, Harper & Bates, 2007).
Regulation of alternative splicing

A number of factors are known to play a crucial role in alternative splicing. Of these known factors, the most studied are RNA-binding proteins and transcription factors. RNA-binding proteins, also known as regulatory proteins, play a wide role in mRNA biogenesis (David & Manley, 2008). When bound to exons, Serine and Arginine-rich (SR) proteins tend to promote exon inclusion, while heterogeneous nuclear ribonuclear proteins (hnRNPs) modulate exon skipping (David & Manley, 2008). Pre-mRNA splicing is catalysed by the spliceosome, a ribonuclearprotein complex composed of five small nuclear ribonuclearprotein particles (hnRNPs), and a number of accessory polypeptides, in a sequential and highly coordinated pathway (Smith & Valcárcel, 2000).

The spliceosome begins its function by recognising the consensus elements on both ends of the intron; the U1 Small nuclear ribonucleoprotein (snRNP) recognises the 5’ splice site, while the 65 kDa subunit of the U2 snRNP (U2AF65) binds to the polypyrimidine tract, and the 35kDa subunit of the U2 (U2AF35) binds to the 3’ splice site. Bridging interactions between U1 snRNP bound to the 5’ splice site and U2AF bound to the 3’ splice-site region are known to be modulated by SR proteins (Smith & Valcárcel, 2000). The SR proteins are involved in both constitutive and regulated splicing (Ladomery, Harper & Bates, 2007). SR proteins contain N-terminal RNA recognition motifs, which mediate binding to the pre-mRNA. Their C-terminal recognise exonic splice enhancers (ESEs) and through protein-protein interactions, bind to the snRNP U2AF35 and U1 snRNP, therefore promoting U1 and U2AF binding.
to splice sites (Smith & Valcárcel, 2000; Ladomery, Harper & Bates, 2007). Smaller regulatory complexes also play a role in achieving cell-type-specific splicing; exonic splice enhancers (ESEs) or silencers (ESSs) promote or inhibit exon inclusion of proximal exons, while intronic splice enhancers (ISEs) or silencers (ISSs) enhance or inhibit the use of exon from an intronic location, respectively (Wang & Burge, 2008; Smith & Valcárcel, 2000). Apart from the functional role of regulatory proteins, changes in their expression levels or post-transcriptional changes may alter their activities, providing a means for the regulation of alternative splicing (David & Manley, 2008). For example, hnRNPA1 which functions in the inclusion of many alternative exons, may become phosphorylated upon osmotic shock, resulting in its cytoplasmic accumulation, which may in turn lead to changes in alternative splicing (Allemand et al., 2005).

Transcription factors have also been studied, and may have a potential influence on alternative splicing, either by influencing the concentration of direct regulators of alternative splicing (e.g. SR proteins and snRNPs), or by altering the rate of RNA polymerase II elongation, leading to indirect effects on alternative splicing. It is therefore important to identify the tissue-specific changes in transcription factor expression during splicing, and the instances in which these changes alter patterns of alternative splicing.
1.9.1. The role of alternative splicing in the development of cancer

The abnormal generation of mRNA splice variants has been implicated in the oncogenic tendencies of several important biomarkers to include vascular endothelial growth factor (VEGF) and Wilms Tumour 1 (WT1); with evidence accumulating to support the theory that some splice variants are more oncogenic than others. This evidence is used to explain why in some studies WT1 appears to act as a tumour suppressor, whilst in others it appears to be operating as an oncogene. Many protein isoforms produced via alternative splicing are tightly regulated during normal development, but may be misregulated in cancer cells. Aberrant expression of alternative splice variants in many genes has been linked with disease progression and prognosis, and cancer cells may manipulate the mechanisms that regulate drug resistance and patient survival (Pal, Gupta & Davuluri, 2012). Recent studies have also demonstrated that the modulation of alternative transcript expression in various genes may impede tumour growth and act as a model for targeting disease at the isoform level (Pal, Gupta & Davuluri, 2012). There are various modes of alternative splicing. The most common types include competing 5’ splice sites, competing 3’ splice sites, cassette exons, mutually exclusive exons, and retained introns (Ladomery, Harper & Bates, 2007; Scaltriti et al., 2007) (Figure 1.7).
1.10 Alternative splicing of HER2 and HER2 Splice Isoforms

1.10.1. Herstatin

In 1999, Doherty et al. described a truncated alternative HER2 transcript which is a secreted protein of ≈68kDa with growth inhibitory properties. Herstatin is a naturally occurring HER2 protein and is generated from alternative HER2 mRNA transcripts that retain the intron 8 (Doherty et al., 1999b). Herstatin is a soluble protein, which can be secreted from cells it has been produced by, and lacks a transmembrane domain (Koletsa et al., 2008). Herstatin, also described as p68 HER2, and dimercept, delineates 340 amino acid residues identical to subdomain I and II of the extracellular domain of p185 HER2. The extracellular domain precedes a unique C-terminal sequence of 79 amino acids encoded by intron 8, which functions as a receptor binding domain (Figure 1.8).
Herstatin is expressed in foetal kidney and liver, and in normal tissues, and is considered as a growth regulatory factor during normal development (Kolesta et al., 2008). Herstatin mRNA and protein have been shown to be expressed in the noncancerous breast tissue, in areas adjacent to breast carcinomas (Kolesta et al., 2008). Recent evidence suggests that Herstatin has a potential significance in the regulation of the wild type (p185) HER2 in normal and malignant development, due to its specific inhibitory effect (Doherty et al., 1999). When bound to p185HER2, Herstatin disrupts the dimerization of HER2 with itself and other HER2 full length receptor homologues, and results in a noticeably reduced tyrosine phosphorylation of HER2 (Wang et al., 2013). Herstatin may therefore have tumour-suppressing activity of down-regulating the expression of p185HER2 through the inhibition of receptor dimerization and the consequent inhibition of tumour formation (Jackson et al., 2013).

Herstatin has also been shown to bind to EGFR, HER3 and HER4, and in a way similar to pertuzumab, blocks homomeric and heteromeric receptor interactions (Justman & Clinton, 2002; Koletsza et al., 2008). More so, In a similar manner to Trastuzumab, binding of Herstatin to the extracellular domain of HER2 leads to degradation of HER2 receptor and endocytosis (Wang et al., 2013). Herstatin specifically blocks dimer phosphorylation by disrupting HER2/HER3 and EGFR/HER2 dimers. Although the majority of tumours express Herstatin mRNA, the Herstatin protein is absent in 75% of breast cancers. This may be because the cancer cells are protected by an intrinsic mechanism against the growth-inhibitory effects of Herstatin (Koletsza et al., 2008).
1.10.2. \textit{HER2}Δ16

An alternative splice form of the human \textit{HER2} containing an in-frame skipping of exon 16, a 48bp cassette exon, has been detected in human breast cancers (Kwong & Hung, 1998; Castiglioni \textit{et al.}, 2006). This splice variant, designated \textit{HER2}Δ16 encodes a receptor that lacks the amino-acids encoded by exon 16, which is a small region of the extracellular domain of \textit{HER2} (Jackson \textit{et al.}, 2013; Mitra \textit{et al.}, 2009) (Figure 1.9). Exon 16 immediately precedes the transmembrane domain and contains two cysteine residues, and lacks the amino acids 634 – 649 in domain IV of the \textit{HER2} extracellular domain (Wang \textit{et al.}, 2013; Kwong & Hung, 1998). The resultant loss of these cysteine residues in the extracellular domain of \textit{HER2} leads to a change in the conformation of the \textit{HER2} receptor extracellular domain promoting the homodimerization of stable receptors capable of transforming cells, via the formation of disulphide bonds (Jackson \textit{et al.}, 2013; Castiglioni \textit{et al.}, 2006). \textit{HER2}Δ16 is purported to constitute a more aggressive \textit{HER2} variant compared to the wild type, p185 \textit{HER2}, and is said to play a crucial role in the malignant transformation and disease progression of \textit{HER2} positive breast cancers. This suggests that patients expressing \textit{HER2}Δ16 may benefit from more aggressive therapy. \textit{HER2}Δ16 has also been linked to \textit{Trastuzumab} resistance, advocating the use of tyrosine kinase inhibitors as an alternative therapy. Studies by
Castiglioni et al. show that the $HER2\Delta 16$ splice variant comprises about 9% of the total $HER2$ mRNA of a collection of 46 breast carcinomas tested, with $HER2$ expression levels ranging from 0 to 3+, as determined by the HercepTest. These studies showed the exon 16 skipped $HER2$ variant to have much stronger transformation activity than the wild type $HER2$ (Castiglioni et al., 2006). Mitra et al. report that $HER2\Delta 16$ expression promotes cell invasion and Trastuzumab resistance through direct coupling of $HER2\Delta 16$ to Src kinase (Mitra et al., 2009). There is evidence that alternative splicing leading to cassette exons within the extracellular domain of some growth factor receptors provides a unique mechanism for the generation of novel isoforms which may encode potentially active molecules (Baek et al., 2004; Collesi et al., 1996; Li et al., 1995). For this reason, the $HER2\Delta 16$ variant represents a constitutively active form of $HER2$ similar to the mutated gene (Marchini et al., 2011). This provides further evidence to the theory that mutations in splice variants affect the progression from normal breast cells to invasive cells, rather than increase in receptor numbers alone (Castiglioni et al., 2006). Therefore, a better understanding of the involvement of $HER2$ splice variants in the response or resistance to current therapies targeting the $HER2$ receptor might be crucial in improving response rates in patients with $HER2$ overexpressing cancers (Castiglioni et al., 2006).

Figure 1.9 Schematic representation of $HER2\Delta 16$ showing the cassette exon on exon 16.
1.10.3. **P100 HER2**

The p100 HER2 transcript was first described by Scott et al. as a spliced variant of HER2 which encodes a 2.3kb protein constituting only the extracellular domain of the full length protein (Scott et al., 1993; Jackson et al., 2013). P100 HER2 arises via an in-frame stop codon which results from the retention of intron 15, and has been found to interfere with oncogenic activity, with the capacity to inhibit cell proliferation (Jackson et al., 2013) (Figure 1.10). The 5’ end of the p100 HER2 gene is a 2.1kb segment of the truncated HER2 transcript homologous to the 5’ end of the full length HER2 transcript, while the 3’ end diverges to reveal an exonic extension with an in-frame stop codon and a poly(A) addition site (Scott et al., 1993). The alternative polyadenylation signal permits reading into the intron which results in the translation of a 100kDa isoform of HER2. The truncated HER2 transcript encodes a 100-kDa variant of the full length 185-kDa transmembrane receptor that, with the exception of 20 C-terminal amino acids, contains the entire HER2 extracellular domain (Scott et al., 1993). Further exploration into the role of p100 HER2 revealed that this secreted truncated form of HER2 gives rise to a decrease in the downstream signal transduction pathway such as the MAPK cascade. Being a secreted protein, the p100 HER2 isoform may also serve as a serum biomarker, and may be crucial in making treatment decisions.
1.11 Hypothesis and objectives of this Study

1.11.1. Hypothesis

Studies have shown the existence of alternative splice variants of HER2, and in addition, that HER2 splice variants may serve various crucial functions in continuing disease progression of HER2 overexpressed or amplified breast carcinomas despite current therapies. The lack of activating mutations in HER2 positive breast cancers and the high proportion of patients who do not respond to current therapies, suggests that it is not only the total number of HER2 receptors that is responsible for malignant transformations in the cell. The expression of alternative splice variants of HER2 resulting in protein isoforms with potent cellular functions, may lead to the development of specific assays to include splice-variant status of certain important isoforms, in the aim of improving diagnosis and treatment. Mutations in the oncoprotein, in particular small deletions in the extracellular domain, may also result in the formation of disulphide bonds. Current investigations into the three identified naturally occurring HER2 splice variants (HER2Δ16, Herstatin and p100 HER2) has been geared on developing new therapeutic strategies to tackle issues with treatment...
resistance and to further understand impact of HER2 overexpression with particular focus on these splice variants (Jackson et al., 2013).

The hypothesis of this study is that in addition to the previously identified roles of HER2 alternative splice variants in the progression and continued transformation of invasive breast cancer, currently unidentified alternative splice variants may be a contributing factor in the poor response of patients to current treatment regimes. The discovery of novel alternative splice variants may lead to identification of HER2 isoforms which play crucial roles in the induction or inhibition of HER2 signalling. The use of these splice variants in the manipulation of HER2 signalling may be of therapeutic benefit to patients diagnosed with HER2 positive breast cancers.

1.11.2. Objectives

1. To develop specific standard RT-PCR primers for the detection of novel splice isoforms of HER2 in invasive breast cancer cell lines.

2. To verify the identity of amplified PCR products by DNA sequencing.

3. To identify the functions of novel splice variants, relating splice variant expression to clinical parameters, using bioinformatics analysis.

4. To identify the expression of novel splice variants ofHER2 in clinical breast cancer samples categorised with 0 to 3+ by immunohistochemistry.

5. To develop double dye (Taqman) probes for the detection of novel alternative HER2 splice variants by quantitative real-time PCR.

6. To study the regulation of HER2 and HER2 splice variants by manipulating cell culture conditions, e.g. induction of hypoxia.
7. To study the effects of tyrosine kinase inhibitors SRPIN340, TG003 and INDY on the regulation of HER2 and HER2 alternative splice variants.

8. To develop siRNAs to knockdown certain splice factors which may be known to play a role in HER2 splicing, and to relate the effects of gene silencing on the expression and regulation of HER2 and HER2 splice variants.
CHAPTER 2. GENERAL MATERIALS AND METHODS

2.1. Antigen Retrieval Immunohistochemistry

2.1.1. Buffers used in Immunohistochemistry

Sodium Citrate buffer (pH 6.0) was used as the antigen retrieval buffer. 0.1M Sodium Citrate buffer was freshly prepared by adding 29.4g of Sodium Citrate and 54ml of 1M HCl to 10L of distilled water and stirring vigorously. The pH value of the buffer solution was adjusted using a pH meter by adding a few drops of freshly prepared 1M HCl or 0.1M NaOH solution to obtain the desired value. The buffer was then stored at 4°C (Kong et al., 2006).

TRIS Buffered Saline (TBS) pH7.4 was used as the washing buffer. 0.005M TBS was prepared by adding 80g of Sodium Chloride, 6.05g of TRIS and 44ml of 1M HCl to 10L distilled water. All antibodies were diluted in TBS (Kong et al., 2006) (Table 2.1).
<table>
<thead>
<tr>
<th>ANTIBODY CLONE</th>
<th>SPECIFICITY</th>
<th>SOURCE</th>
<th>CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP3</td>
<td>HER2</td>
<td>Labvision Corporation, UK</td>
<td>0.6 µg/mL</td>
</tr>
<tr>
<td>6F11</td>
<td>ER</td>
<td>Novocastra Laboratories, UK</td>
<td>0.8 µg/mL</td>
</tr>
<tr>
<td>CB11</td>
<td>HER2</td>
<td>Novocastra Laboratories, UK</td>
<td>0.5 µg/mL</td>
</tr>
<tr>
<td>PGR636</td>
<td>PR</td>
<td>Dako Uk Ltd</td>
<td>0.5 µg/mL</td>
</tr>
</tbody>
</table>

Table 2.1 Antibodies used in immunohistochemistry, their specificities and concentrations.

2.1.2. Antigen retrieval microwave heating technique

Tissue sections 5 microns thick mounted on slides were prepared for antigen retrieval by deparaffinising in two changes of Histoclear (5 minutes each), rehydrating in two changes of 100% Industrial methylated spirit (3 minutes each) and rinsing in tap water for a few minutes. The sections were treated with 3% hydrogen peroxide to block endogenous peroxidise for 5 minutes, and rinsed thoroughly in distilled water. The slides were then placed in a plastic slide rack and transferred into a plastic jar containing the antigen retrieval buffer solution and the slide rack was completely covered in antigen retrieval buffer solution. The plastic jar was covered with a loose-fitting cap and the slides were heated in a microwave oven at a temperature of 100°C.
The duration of heating was 25 minutes in Sodium Citrate buffer (pH 6.0). After heating the sections were washed and cooled to room temperature in running tap water and rinsed in TBS before immunostaining (Hayat, 2002).

2.1.3. Immunohistochemical staining methods

All immunohistochemical assays were performed at room temperature (20-25°C). Although most automated immunohistochemical systems suggest that conducting immunohistochemical staining at 4°C may improve antigenicity, in most instances, the use of room temperature is generally acceptable and has been known to give highly reproducible results (Vogel, 1901). Antibodies used for immunohistochemical staining are listed in table 2.1. The Vector Elite ABC system for immunohistochemistry, with a peroxidase label (Vector Labs, Uk) was used as the detection kit. Diaminobenzidine -DAB (Dako Uk Ltd) was used to visualise the labelled antibodies.

The sections were incubated in normal goat serum for 5 minutes to prevent non-specific binding of the antibodies, and then incubated in primary antibody for 60 minutes. After staining with the primary antibody, sections were then incubated with a linking secondary biotinylated antibody for 30 minutes. Sections were washed after each stage with TBS at pH 7.4. The slides were then incubated in the enzyme-conjugated ABC label for 30 minutes, rinsed in TBS and washed in distilled water. Conjugation of the primary antibody with biotin is a method of labelling which, due to the high affinity of avidin to biotin, enables the visualization of proteins when bound to fluorescent or enzyme-labelled avidin. The resulting avidin-biotin (ABC) complex forms a stable complex, and is a highly sensitive method for detection of the primary
antibody. Finally the sections were treated with the chromogen 3,3’ diaminobenzidine (DAB) for 10 minutes, washed in running tap water, counterstained in Harris’ haematoxylin for 2 minutes, differentiated in 1% acid alcohol for a few seconds, left to blue in running tap water and dehydrated in alcohol, cleared and mounted in DPX for examination under a microscope (Hayat, 2002).

2.1.4. Evaluation of Immunohistochemistry results

Slides were examined using Nikon Eclipse 50i microscope. Photomicrographs were taken with a Nikon Digital Sight DS-UI camera.

2.2. Cell culture

Human breast and ovarian cancer cell lines were obtained from the European Collection of Cell Cultures (ECACC; Salisbury, UK) and the American Type Culture Collections (ATCC; Middlesex, UK). In order to eliminate contaminants arising from high passage numbers, all six cell line stocks were frozen down at passages 5 to 10, and cells were cultured up to a maximum of 10 passages before being replaced by frozen stocks (van Staveren et al., 2009). The cell lines were cultured in their respective growth media in cell culture flasks according to their manufacturers’ recommendations, in a humidified atmosphere.

All cell culture media were supplemented with 10% Foetal Bovine Serum (Biosera, UK), 2mM L-Glutamine (Lonza, UK) and 100u/ml penicillin-streptomycin solution (Lonza, UK). All cells lines were adhering cells. Upon reaching confluence, cells were washed in
Phosphate Buffered Saline (PBS) and removed from the bottom of the flasks by trypsinization in 1x trypsin/EDTA solution (Lonza, UK) (Goren et al., 2010).

<table>
<thead>
<tr>
<th>CELL LINE</th>
<th>ORIGIN</th>
<th>HER2 STATUS</th>
<th>CULTURE MEDIA</th>
<th>CULTURE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOV3</td>
<td>Ovarian Cancer</td>
<td>HER2 3+</td>
<td>McCoy’s 5A Medium (Lonza, UK)</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>SKBR3</td>
<td>Breast Cancer</td>
<td>HER2 3+</td>
<td>McCoy’s 5A Medium (Lonza, UK)</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>BT-20</td>
<td>Breast Cancer</td>
<td>HER2 -</td>
<td>DMEM (Lonza, UK)</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>MCF-7</td>
<td>Breast Cancer</td>
<td>HER2 -</td>
<td>DMEM (Lonza, UK)</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>MDA-MB-453</td>
<td>Breast Cancer</td>
<td>HER2 2+</td>
<td>DMEM (Lonza, UK)</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>MDA-MB-361</td>
<td>Breast Cancer</td>
<td>HER2 2+</td>
<td>DMEM (Lonza, UK)</td>
<td>37°C, 5% CO₂</td>
</tr>
</tbody>
</table>

Table 2.2 Cell line models used in cell culture studies and their culture conditions.

The cell lines used in this study represent samples with varying levels of HER2 expression, and were therefore considered a good model for HER2 expression analysis, based on the repository of cells available for selection.

2.3. RNA extraction

2.3.1 RNA extraction from cell cultures

Total RNA was extracted from cells using TRI reagent (Ambion, UK), a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components which
facilitate the isolation of a variety of RNA species of large or small molecular size (Mita et al., 2007). Cells were washed twice in PBS, and 1ml TRI reagent was added to the cells. The cells were removed from the flasks or plates by scraping to one side; the resulting lysate was then removed and placed in a 1.5ml eppendorf and incubated for 5 minutes at room temperature, 0.2ml chloroform (Sigma, UK) was added to the lysates and the suspension was mixed by inversion and incubated at room temperature for 15 minutes. The suspension was then centrifuged at 12,000xg for 15 minutes at 4°C, after which the aqueous phase was transferred into fresh micro centrifuge tubes. To pellet the RNA 0.5ml of isopropanol was added to each micro centrifuge tube and mixed thoroughly by vortexing. The mixture was incubated at room temperature for 10 minutes and then centrifuged at 12,000xg for 8 minutes at room temperature. The resulting supernatant was carefully removed and the RNA pellet was washed by adding 1ml of 75% ethanol and centrifuged at 7,500xg for 5 minutes (Doherty et al., 1999b). After removal of the supernatant, the RNA was air dried and resuspended in 20-50µl of nuclease free water, depending on the size of the pellet. The RNA suspension was incubated for 5 minutes at 55°C on a heating block to completely dissolve the RNA pellet. The resulting RNA was then stored at -80°C.

2.3.2 RNA extraction from Formalin Fixed, Paraffin Embedded (FFPE) samples

Fourteen FFPE samples were kindly supplied by Dr Muhammed Sohail (Department of Histopathology, United Hospitals Bristol Foundation Trust, Bristol Royal Infirmary, UK). The department of histopathology holds a general pathology accreditation awarded by the Clinical Pathology Accreditation (UK) Ltd. The criteria for selection of breast cancer tissue were based on the tissues being HER2 2+ or 3+ as determined by HercepTest.
10µm thick sections were cut from selected blocks of breast cancer which were confirmed to be HER2 2+ and 3+ by immunohistochemistry, as determined by HercepTest carried out by the Bristol Royal infirmary laboratory. Total RNA was extracted from FFPE samples using the RNEasy FFPE kit (Qiagen, UK) according to manufacturer’s protocols, with the following modifications: Four 10µm thick sections were placed in 1.5ml eppendorf tubes and deparaffinised by adding 1ml of Histoclear, vortexing for 10 seconds and centrifuging at full speed for 2 minutes to bring the samples to the bottom of the tubes. The supernatant was then removed and discarded. To remove the Histoclear, 1ml of 100% ethanol was added to the pellets, mixed by vortexing and centrifuged at full speed for 2 minutes. The supernatant was removed and discarded, and the pellets were incubated at room temperature for 10-15 minutes to completely dry the pellet, thereby removing residual ethanol. 150µL of buffer PKD was added to the tubes; the solution was mixed by vortexing, and centrifuged for 1 minute at 11,000xg. 10µl of Proteinase K was then added to the lower, clear phase containing the RNA, mixed by gently pipetting, incubated overnight at 15°C, and then for 15 minutes at 80°C. This step is crucial for reversal of cross links to ensure optimal performance in downstream applications such as qRT-PCR. The lower, clear phase was then transferred to new 2ml microcentrifuge tubes, incubated on ice for 3 minutes, and then centrifuged for 15 minutes at 20,000xg. The resulting supernatant was transferred into fresh microcentrifuge tubes. To treat for genomic DNA contamination, 16µL DNAse booster and 10µL DNAse I solution were added to the tubes and incubated for 15 minutes at room temperature. 320µl of buffer RBC was added to the tubes to adjust the binding conditions, and mixed by vortexing. 700µl of ethanol was added to the tubes, and mixed by pipetting. The sample was then passed
through an RNeasy MinElute spin column placed in a 2 ml collection tube. The spin column was then centrifuged at 8,000xg for 15 seconds and the flow-through was discarded. This step was repeated until the entire sample was passed through the MinElute spin column. 500ml of buffer RPE was then added to the spin columns and centrifuged at 8,000xg for 15 seconds and the flow-through was discarded. 500ml of buffer RPE was again added to the spin columns to wash the spin column membrane, centrifuged at 8,000xg for 2 minutes, and the flow-through discarded along with the collection tube. The spin column was then transferred into fresh collection tube and centrifuged at full speed for 5 minutes. This step is necessary to ensure that the residual ethanol on the membranes of the spin columns is removed. The spin columns were then placed in fresh 1.5ml microcentrifuge tubes and 20µL of RNase-free water was added to the column membrane. After incubating for 5 minutes at room temperature, the spin columns were centrifuged for 1 minute at full speed to elute the RNA (Abramovitz et al., 2008).

2.3.3 Assessment of RNA yield and quality

The yield and quality of isolated RNA was determined using a Nanodrop 1000A UV spectrophotometer (Thermo Fisher Scientific, USA). RNA concentrations for the cell lines used in this study can be found in Table 3.1. The Nanodrop UV spectrophotometer is used for analysing nucleic acid concentrations and the purity of nucleic acid samples with high accuracy using as small as 1µl of sample volume. A ratio of ~1.8 of sample absorbance at 260/280 nm was considered pure for RNA samples.
2.4. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

2.4.1. First-Strand Synthesis of cDNA

Prior to first strand synthesis total RNA was treated for genomic DNA contamination with RQ1 RNAse-free DNAse (Promega, UK). 1µg of RNA was diluted up to 8µl in nuclease free water and incubated with 1µl RQ1 RNAse-free DNAse 10x reaction buffer and 1µl RQ1 RNAse-free DNAse for 30 minutes at 37°C. The DNase reaction was terminated by the addition of RQ1 DNAse stop solution and heating to 65°C for 10 minutes. First-strand cDNA synthesis was then performed using equal amounts of total RNA by incubating with random hexamers (Qiagen UK) at 65°C for 5 minutes and then cooling immediately on ice. The reverse transcriptase buffer, dNTP mix, RNase inhibitor and Omniscript reverse transcriptase (Qiagen, UK) were then added to the reaction and incubated at 37°C for 60 minutes. To ensure that subsequent PCR amplification was derived from RNA and not genomic DNA or other contaminants, a no-RT control was included in every reverse transcription experiment (Bustin et al., 2009). The yield and quality of cDNA synthesized was determined using a Nanodrop 1000A UV spectrophotometer (Thermo Fisher Scientific, USA). A ratio of ~1.8 of sample absorbance at 260/280nm was considered pure for cDNA samples.

2.4.2. Standard Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Standard PCR reactions of 20µl volumes consisted of 1x green GoTaq® Flexi Buffer; 2µM MgCl₂; 0.2µM of each dNTP; 0.5µM of each primer; 1.25U GoTaq® Hotstart DNA polymerase and ~200ng template cDNA. All standard PCR reagents were supplied by Promega UK. For control amplifications cDNA was replaced by nuclease free water.
Cycling was performed using a PTC200 Peltier Thermal Cycler (MJ research, USA) using the following conditions: hotstart at 95°C for 2 minutes followed by 35 cycles of 95°C for 1 minute (denaturing), 54-64°C for 1 minute (annealing), 72°C for 1 minute (extending), and a final extension of 5 minutes at 72°C. A soaking cycle of 4°C was included to hold the tubes after amplification, prior to storage at -20°C (Hillig et al., 2012).

2.4.3. Agarose gel electrophoresis

RT-PCR products were separated using molecular grade Agarose (Bioline UK). A 2% Agarose gel was prepared by dissolving Agarose powder in 1x TAE buffer and heating in a microwave until the Agarose powder was dissolved in the buffer. Ethidium bromide (10mg/ml; Sigma-Aldrich, UK) was added to a final concentration of 0.5µg/ml and the molten Agarose solution was poured into a gel tray and left to set at room temperature for 15 minutes. DNA samples were loaded onto the gel and subjected to electrophoresis at 120V for 1 hour 20 minutes. DNA hyperladder (Bioline UK) was run simultaneously to allow estimation of DNA fragment sizes. DNA was visualised under UV light on a MiniBis gel documentation system (Berthold Technologies, Germany).

2.5. Cloning of RT-PCR products for sequencing

2.5.1. Gel extraction and purification of PCR products

100µl reactions of PCR products destined for cloning were separated on a 3% Agarose gel and the bands excised from the gel prior to purification using a sterile scalpel. PCR products were purified using Qiaquick Gel Extraction Kit (Qiagen UK) (Lukas et al., 2001). The excised gel bands were transferred to micro centrifuge tubes and weighed.
Three volumes of buffer QG were added to one gel volume, incubated at 50°C for 10 minutes and vortexed every 2-3 minutes until the gel was completely dissolved. To increase the DNA yield, 1 gel volume of isopropanol was added to the sample and mixed by inverting the tube several times. To bind the DNA, the sample was then transferred to a Qiaquick spin column, placed in a collection tube and centrifuged at 10,000xg for 1 minute and the flow-through was discarded, 500µl of buffer QG was added to the spin column and centrifuged at 10,000 x g for 1 minute and the flow-through discarded. To wash the DNA, 750µl of buffer PE was added to the column and centrifuged at 10,000 x g for 1 minute. To remove residual ethanol, the flow-through was discarded and the spin column was centrifuged for an additional 1 minute at 10,000 x g. To elute the DNA the Qiaquick column was transferred to a fresh 1.5ml micro centrifuge tube and 10µl of buffer EB was added to the column and incubated for about 1 minute and centrifuged at 10,000 x g for 1 minute. The purified DNA was stored at 4°C.

2.5.2. Preparation of LB broth and LB/Agar plates with ampicillin/IPTG/X-GAL

LB broth medium was prepared by suspending 20g of LB power (Sigma UK) in 1L of distilled water and sterilized by autoclaving. LB/Agar plates were prepared by suspending 20g of LB powder (Sigma UK) and 15g of Agar (Sigma UK) in 1L of distilled water and sterilized by autoclaving. The LB + Agar mixture was cooled to approximately 50°C and stock solutions of IPTG, X-GAL and ampicillin (bioline, UK) were added to the LB + Agar mixture to a final concentration of 100µg/ml each, and then mixed by inversion (Doherty et al., 1999b). The mixture was then poured into petri dishes and cooled until solid.
2.5.3. Ligation into pGEM-T Easy vector

The pGEM®-T Easy Vector system (Promega, UK) is a convenient system for cloning of PCR products. The pGEM-T Easy vector is prepared by digestion with EcoRV and adding a 3’ terminal thymidine terminal overhang to both ends to prevent recircularisation of the vector and enable insertion of PCR products generated using thermostable polymerases that add a deoxyadenosine to the 3’ end of amplified PCR products. The high copy number pGEM®-T Easy Vector contains T7 and SP6 RNA polymerase promoters flanking an alpha peptide multiple cloning region, which when inactivated, allows recombinant clones to be identified by blue/white screening on indicator plates.

The ligation reaction consisted of 1µl (50ng) pGEM-T Easy Vector, 5µl 2x T4 DNA Ligase rapid ligation buffer, 1µl (3 Weiss units/µl) T4 DNA Ligase and 3µl gel purified PCR product. The reactions were incubated overnight at 4°C to produce a maximum number of transformants.

2.5.4. Transformation into JM109 High Efficiency Competent E. coli cells

PCR ligation reactions were inserted into JM109 High Efficiency Competent E. Coli cells (Promega, UK). 50µl of cells were added to fresh microcentrifuge tubes and incubated on ice for 20 minutes with 2µl of each ligation reaction. Cells were heat-shocked in a water bath at 42°C for 50 seconds and then placed on ice for 2 minutes. 950µl of LB broth was added to the cells then incubated at 37°C for 1.5 hours with shaking. Transformed cells were then grown overnight on LB plates with ampicillin/IPTG/X-GAL at 37°C. Single white E. coli colonies were selected and used to inoculate 5ml LB medium containing 100µg/ml ampicillin and incubated overnight at 37°C with shaking.
2.5.5. Extraction of plasmid DNA

Plasmids were extracted from E. coli cells using The PureYield™ Plasmid miniprep system (Promega UK). The PureYield™ Plasmid Miniprep System is designed to purify plasmid DNA from an overnight culture of bacteria transformed with a high-copy number plasmid. Cells were pelleted by centrifugation at 10,000xg for 5 minutes and the supernatant discarded. Cells were resuspended in 600µl of nuclease free water, lysed by adding 100µl of cell lysis buffer, and mixed by inverting the tube several times. Lysis was terminated by adding 350µl of neutralization solution and the solution was thoroughly mixed by inversion. The reaction was then centrifuged at 10,000xg for 3 minutes to pellet the debris resulting from lysis. The supernatant was then transferred to a PureYield™ Mini column and centrifuged at 10,000xg for 15 seconds and the flow through discarded. The column was then washed by adding 200µl of Endotoxin Removal Wash (ERB) to the mini column and centrifuged at 10,000xg for 15 seconds, and then adding 400µl of column wash solution (CWS) to the mini column and centrifuging at 10,000xg for 30 seconds. The resulting DNA was eluted by adding 30µl of Elution Buffer directly to the mini column matrix and incubating for 1 minute. The column was then transferred to a fresh 1.5ml tube and centrifuged at 10,000xg for 30 seconds. The eluted purified plasmid DNA was quantified using a Nanodrop 1000A UV spectrophotometer (Thermo Fisher Scientific, USA) and then stored at -20°C.
2.6. Quantitative real-time PCR (qRT-PCR)

2.6.1. Quantitative real-time PCR amplifications

Primers and probes for qRT-PCR were designed by Primer Design UK. The amplicon lengths for all primer sets were 90-150 base pairs. All PCR reactions were performed using a Step One Plus™ Real-Time PCR system (Life Technologies, UK). Real-time PCR reactions were set up using Sensifast Probe Hi-Rox and Sensifast SYBR Hi-Rox kits (Bioline, UK). 25ng cDNA was used for each reaction containing 1x Sensifast master mix, primers (400nM each), probe (100nM) and nuclease free water (up to 20ul). All reactions were set up in triplicate in a 96 well plate. The cycling conditions comprised polymerase activation for 2 minutes at 95°C, followed by 40 cycles of denaturation at 95°C for 5 minutes, and annealing at 60°C for 15 seconds. For SYBR green chemistry, the specificity of the primers was determined using a melt curve analysis by increasing the cycling temperature in one degree increments, starting at 50°C, for 40 cycles of 10 seconds each. The efficiency of the primers was also determined using a standard curve. Six serial doubling dilutions of pooled cDNA samples were run in triplicate alongside the main reaction. C_T values were plotted against arbitrary log values on an excel spreadsheet using a scatter plot. R^2 values of ≥0.96 were accepted for correlation efficiency (Derveaux, Vandesompele & Hellemans, 2010).

2.6.2. Calculations

C_T values were automatically determined by the Step One Plus™ Real-Time PCR system (Life Technologies, UK). Relative expression of target mRNA in different samples were normalised to a set of reference genes using the Relative Standard Curve method. A
standard curve was set up for each primer set by running six serial doubling dilutions of pooled cDNA in triplicate alongside the main reactions. The standard curve was determined using the equation:

\[y = mx + c. \]

The \(C_T \) \((y)\) values generated from the real-time PCR reaction was then used to derive the following equation:

\[x = \left(\frac{y-c}{-m}\right) \]

Once the \(x \) values were derived, they were then converted to real numbers by anti-logging, normalised against a set of reference genes, and the fold difference between control and experimental samples were calculated (Emir, 2011). The statistical significance of the fold difference between two samples was determined by student’s \(t \)-test.

2.6.3. Normalisation of real-time qRT-PCR

The use of quantitative real-time PCR in gene expression analysis has become increasingly important in biological research. Due to the sensitivity of the qRT-PCR assay, accurate normalization of data is necessary to ensure that changes in gene expression from sample to sample are not due to errors like variations in sample size, pipetting errors or errors in the reverse transcription step.
The use of reference genes as endogenous controls in qRT-PCR is one of the most common methods used in the normalization of qRT-PCR data. However, the expression of reference genes may vary considerably between experiments as no single gene is stably expressed from sample to sample or under all experimental conditions. Randomly selecting a reference gene of choice may lead to large errors in data analysis; therefore it is essential to identify a reference gene or a set of genes from a set of candidate genes, that are most stably expressed in every experimental model (Derveaux, Vandesompele & Hellemans, 2010; Vandesompele et al., 2002; Romanowski et al., 2007; Andersen, Jensen & Ørntoft, 2004; Bustin et al., 2009).

Two different methods of reference gene selection were used in this project:

- **Genorm**^{PLUS} (Ghent, Belgium): the Genorm^{PLUS} algorithm calculates the most stably expressed reference gene or set of reference genes from a set of genes based on the geometric mean of a number of housekeeping genes (Vandesompele et al., 2002).

- **Normfinder** (Molecular Diagnostics Laboratory, Denmark): The normfinder algorithm ranks a set of candidate reference genes according to their stability in a given experimental design (Andersen, Jensen & Ørntoft, 2004).

A set of 12 candidate reference genes were chosen for use in the selection of optimal reference genes for the normalisation of qRT-PCR (Table 2.3).
<table>
<thead>
<tr>
<th>GENE NAME</th>
<th>DESIGNATION</th>
<th>ACCESSION</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>18s Ribosomal RNA</td>
<td>18S</td>
<td>NM_10098</td>
<td>Protein translation</td>
</tr>
<tr>
<td>Beta actin</td>
<td>ACTB</td>
<td>NM_001101</td>
<td>Cytoskeletal protein involved in cell motility, structure, and integrity</td>
</tr>
<tr>
<td>Homo sapiens ATP synthase, H+</td>
<td>ATP5B</td>
<td>NM_001686</td>
<td>ATP synthesis</td>
</tr>
<tr>
<td>Beta-2-microglobulin</td>
<td>B2M</td>
<td>NM_004048</td>
<td>Beta-chain of major histocompatibility complex class I molecules involved in the presentation of peptide antigens to the immune system.</td>
</tr>
<tr>
<td>Cytochrome c-1</td>
<td>CYC1</td>
<td>NM_001916</td>
<td>Electron transport in mitochondrial respiratory chain</td>
</tr>
<tr>
<td>Eukaryotic translation initiation factor 4A2</td>
<td>E1F4A2</td>
<td>NM_001967</td>
<td>Initiation of translation</td>
</tr>
<tr>
<td>GENE NAME</td>
<td>DESIGNATION</td>
<td>ACCESSION</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>GAPDH</td>
<td>NM_002046</td>
<td>Oxidoreductase in glycolysis</td>
</tr>
<tr>
<td>Ribosomal protein L13A</td>
<td>RPL13A</td>
<td>NM_012423</td>
<td>Protein synthesis</td>
</tr>
<tr>
<td>Succinate dehydrogenase complex, subunit A, flavoprotein</td>
<td>SDHA</td>
<td>NM_004168</td>
<td>Mitochondrial respiration</td>
</tr>
<tr>
<td>Topoisomerase DNA I</td>
<td>TOP1</td>
<td>NM_003286</td>
<td>Control and alteration of DNA topology during transcription</td>
</tr>
<tr>
<td>Ubiquitin C</td>
<td>UBC</td>
<td>NM_021009</td>
<td>Ubiquitination</td>
</tr>
<tr>
<td>Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta</td>
<td>YWHAZ</td>
<td>NM_145690</td>
<td>Mediation of signal transduction</td>
</tr>
</tbody>
</table>

Table 2.3: Reference genes used for qRT-PCR and their functions in normal physiology.

2.7. Protein analysis

2.7.1. Protein extraction

Protein extraction was carried out using Radioimmunoprecipitation assay (RIPA) lysis buffer (Fisher, UK). Cells grown in monolayer were washed twice with cold PBS. 500μL of RIPA buffer, supplemented with protease and phosphatase inhibitors (sigma, UK) was added to a 75cm² flask or 5x10⁶ cells and kept on ice for 5 minutes with occasional
swirling of the flask for uniform spreading. The lysate was then removed from the flask by scraping to gather to one side, and transferred into a microcentrifuge tube. To increase yield, the lysates were homogenised by taking the homogenate up and down 20 times using a 21G needle. The homogenate was then centrifuged at 13,000 rpm for 15 minutes at 4°C to pellet the cell debris. The supernatant was then transferred to a fresh microcentrifuge tube and stored at -80°C.

2.7.2. Protein quantification

Protein concentration was determined using the Coomassie Blue dye binding method for protein estimation (Bradford Method) (Siegel et al., 1999). This assay is based on an absorbance shift of the coomassie blue G dye when it binds to proteins. The increase in absorbance at 595nm is proportional to the amount of bound dye and thus, the concentration of protein present in the sample.

A stock dye solution was prepared dissolving 330mg of coomassie blue G dye in 100ml phosphoric acid/ethanol (2:1) mixture. The working dye solution was prepared by mixing 1.5ml of stock dye reagent, 4ml of phosphoric acid, 1.9ml of ethanol and making up to 50ml in distilled water. A protein standard was prepared by dissolving albumin in deionised water to a final concentration of 1µg/µL. Reactions were carried out in triplicate in a 96 well plate and the absorbance was measured at 560nm.

2.7.3. SDS PAGE

Proteins were separated using a criterion XT system (Bio-rad, UK). Samples were thawed on ice from frozen and 20µg of protein lysates were mixed with 4x NuPAGE LDS sample buffer diluted to 1x in distilled water (Life Technologies, UK), and made up
to 20µl volume in distilled water. The concentration of protein for SDS was determined following the general protocols for western blotting by the Bio-rad systems. The mixture was heated to 95°C for 5 minutes prior to being loaded onto a criterion XT 4%-12% Bis-Tris pre-cast gel (Bio-rad, UK). The Criterion gel system (Bio-rad, UK) was assembled according to manufacturer’s instructions and filled with 1 litre of 1x XT-MES running buffer (Life Technologies, UK). The criterion XT pre-cast gel was inserted into the gel tank and 10µl HyperPAGE II broad range pre stained protein marker (Bioline, UK) was loaded to the first well. Samples were loaded to subsequent wells and run at 120 volts for 1-2 hours.

2.7.4. Western blot analysis

Following SDS PAGE, Polyvinylidene fluoride (PVDF) membrane (GE Healthcare, UK) was cut to appropriate size and activated by immersing in methanol for 2 minutes. The membrane was then rinsed in distilled water and then left to equilibrate in 1x transfer buffer (20x Nupage transfer buffer, 5% methanol in distilled water). The gel and membrane were then transferred onto a Criterion blotter (Bio-Rad, UK) and the proteins were transferred at 50 volts at 4°C for 1 hour. Following transfer the membranes were transferred to blocking solution [5% (w/v) non-fat dry milk solution, 0.02% (v/v) Tween 20 (Life Technologies, UK) in PBS] for 1 hour at room temperature with rocking. After blocking, the membranes were incubated in primary antibody (in 5% non-fat dry milk solution) at 4°C overnight. Following incubation in primary antibody, the membrane was washed 3 times with PBS-T at room temperature for 15 minutes each with rocking. The PBS-T was then removed and the membranes were incubated in HRP-linked secondary antibody (Santa Cruz Biotechnology, UK) for 45
minutes at room temperature. The membranes were then washed 3 times with PBS-T at room temperature for 15 minutes each with rocking, and then rinsed in distilled water (Al Okail, 2010). Table 6.1 shows a list of antibodies used in western blotting and their specificities.

After washing the membranes, HRP-chemiluminescent substrate was applied to the membranes and the bands were visualised in a dark room by developing on a film (Amersham Hyperfilm ECL; GE Healthcare).

2.8. RNAi methods

2.8.1. siRNA transfection of cells

Cells were prepared for transfection by seeding in 2ml antibiotic free media in 6-well plates at a density of 0.6x10^6 for 24 hours. On the day of transfection, cells were serum starved in Opti-MEM® I Reduced Serum Media (Life Technologies, UK) for 2 hours. siRNA transfection was then carried out using siGENOME siRNA smartpool SRPK1 and SRSF1 (Thermoscientific, UK) and siGENOME Non-Targeting siRNA Pool #2 as a negative control. Dharmafect 2 transfection reagent (Thermoscientific, UK) was used (Sahlberg et al., 2013). siRNA transfection was carried out according to the manufacturer’s guidelines with the following modifications:

A 2mM siRNA solution was prepared by diluting in 1X siRNA Buffer (Thermoscientific, UK). In separate tubes, 100nM siRNA and Dharmafect 2 transfection reagent were diluted using Opti-Mem 1 medium. Contents of each tube were carefully mixed by pipetting up and down and incubated for 5 minutes at room temperature. The content
of both tubes were then carefully mixed together by carefully pipetting up and down. The final mixture was then incubated for 20 minutes at room temperature to allow the formation of transfection complexes. Prior to adding the transfection reagents to the cells, cell culture medium was removed from the cells and fresh opti-Mem I was added to the cells, and then the appropriate transfection mix was added to the cells at a final concentration of 100nM siRNA and 6µl Dharmafect 2 reagent per well. Cells were then incubated for 6 hours to allow the transfection reagents to permeate the cell membranes. After 6 hours of transfection, the transfection reagent was removed from the cells and replaced with antibiotic free medium, and the cells were then incubated for 24-48 hours before protein or RNA extraction. All knockdowns were carried out in triplicate, with each replicate performed on a different passage of cells. A mock transfection and a non-treated control was added to each experiment.
CHAPTER 3. DISCOVERY OF HER2 AND HER2 ALTERNATIVE SPLICE VARIANTS IN BREAST AND OVARIAN CANCER CELL LINES

3.1 Introduction

Amplification of the HER2 oncogene is one of the genetic abnormalities in breast tissue associated with the progression from normal breast epithelia to invasive cancer cells (Castiglioni et al., 2006). HER2 testing is essential for the appropriate administration of the humanized anti-HER2 monoclonal antibody therapy Trastuzumab (Herceptin®, Genetech, South San Francisco, CA) to invasive breast cancer patients with HER2 overexpression or gene amplification (Bartlett et al., 2001; Dean-Colomb & Esteva, 2008). However, the discovery of alternative splice variants of HER2 potentially adds extra complexity in mediating patient response to HER2 therapies as different HER2 splice variants may have differing biological properties (Mitra et al., 2009; Marchini et al., 2011). Research studies suggest that expression and secretion of aberrant HER2 splice variants can interfere with the oncogenic HER2 activity (Aigner et al., 2001). Whereas the wild type p185 HER2 is associated with pro-oncogenic receptor activity, resulting in poor prognosis and disease progression if overexpressed or over amplified in breast cancer, the HER2 isoforms Herstatin and p100 HER2 are thought to have anti-oncogenic function by inhibiting receptor dimerization and subsequently inactivating signal transduction pathways (Wang et al., 2013). Also, the HER2 exon 16 immediately precedes the transmembrane domain and contains two cysteine residues. The loss of exon 16 in HER2Δ16 therefore leads to a change in the conformation of HER2 receptor extracellular domain that promotes intermolecular disulphide bonding, thereby
promoting the formation of constitutively activated HER2 homodimers capable of transforming cells (Castiglioni et al., 2006). Therefore it may be of significant prognostic value to determine the HER2 variant status of patients with invasive breast cancer. The recommended methods for testing HER2 status in breast cancer patients are Immunohistochemistry and Fluorescence In-situ Hybridization (FISH) (Wolff et al., 2007), and more recently, Silver in-situ hybridization (SISH) is also being used as an alternative to the FISH technique (Moelans et al., 2011). With growing evidence of the potential involvement of alternative splice variants as biomarker candidates in cancer diagnosis (Lukas et al., 2001; Marchini et al., 2011; Omenn, Yocum & Menon, 2010), the discovery of novel alternative splice variants of HER2 and their potential role in disease progression or resistance to Trastuzumab may be crucial in developing potential novel methods of testing and treatment of HER2 in patients with invasive breast cancer.

Objectives

1. To detect HER2 protein expression in breast cancer cell lines by immunohistochemistry.

2. To detect HER2Δ16 in HER2 overexpressing breast and ovarian cancer cell lines.

3. To design PCR primers for the detection of HER2 and possibly novel HER2 splice variants in cell lines by RT-PCR.

4. To sequence the HER2 cDNA and HER2 splice variants following RT-PCR amplification.
3.2 Methods

3.2.1 Antigen Retrieval for Immunohistochemistry

Antigen retrieval was performed prior to Immunohistochemical staining in SKBR3 (HER2 3+; ER-; PR-) , BT-20 (HER2--; ER--; PR-) and MCF-7 (HER2-, ER+; PR+) cell lines. Breast cancer cells mounted on slides were stained with monoclonal antibodies to HER2 (SP3; CB11), Oestrogen Receptors (6F11), and Progesterone Receptors (PGR636) (Table 3.1).

3.2.2 HER2 primer design for RT-PCR

The polymerase chain reaction (PCR) is a reliable method used to amplify specific genes of interest, or sections of a gene (Schrader et al., 2012). Specific primer sequences corresponding to a specific gene of interest are used to amplify sections of DNA, with the use of DNA polymerase, enabling the generation of unlimited copies of a small fragment of DNA (Joshi & Deshpande, 2011; Schrader et al., 2012).

The open reading frame of HER2 mRNA as predicted by the ExPASY translate tool was amplified by PCR using 12 sets of sequence-specific primers (Figure 3.1). The primers were designed using OligoPerfect™ Designer (Invitrogen, UK). The nucleotide sequences used for the primer design were based on HER2 ncbi GenBank® accession number NM_004448 (NCBI, 2010). NP1, NP2, NP5 and NP6 primer sequences for the amplification of HER2Δ16 were obtained from Kwong & Hung (1998). Primers were
synthesized by Eurofins MWG Operon (Ebesberg, Germany). Primer sequences for all primers used in HER2 amplification are listed in Appendix A.

Figure 3.1: Design of HER2-specific RT-PCR primers for used to amplify HER2 cDNA. Arrows indicate positions of primers in target exons.
3.2.3 DNA sequencing

All DNA products isolated and purified from RT-PCR analysis were sequenced using the Sanger method of DNA sequencing to confirm that the insert sequences were from *HER2* mRNA. DNA sequencing was performed at three independent locations:

- **University of the West of England**: Plasmid DNA templates were supplied at a concentration of 200ng/μl in a total volume of 10μl. The sequencing reactions consisted of 8 μl of 1 x BigDye Terminator v. 3.1 ready reaction mix (Applied Biosystems, UK), 3 μl of dilution buffer (Applied Biosystems), 3.2 pmol of primer, and 0.2 μg of template DNA in a final reaction volume of 20 μl. Cycling conditions included an initial one minute denaturation step at 96°C, followed by 25 cycles at 96°C for 10 seconds, 50°C for 5 seconds, and 60°C for 4 minutes, and a final extension at 15°C for 10 minutes. Samples were electrophoresed on an Applied Biosystems 3730xl automated DNA sequencing instrument, using 37 cm capillary arrays and POP-7 polymer. Sequencing of plasmids was performed using T7 and SP6 promoter primers. Data were analyzed using PE-Biosystems version 3.7 of Sequencing Analysis.

- **MWG operon**: 50-100ng/μl of plasmid DNA in a final volume of 15μl was sent to MWG operon for commercial single strand sequencing using T7 and SP6 promoter primers.

- **University of Exeter**: following agarose gel electrophoresis, DNA was obtained directly from the agarose gel by stabbing the bands with a p20 pipette tip while being visualised with the UV transilluminator. The DNA was then re-amplified.
by RT-PCR, using the same primers used for the initial PCR amplification, tagged with M13 primers (primer sequences are listed in appendix A), under the same cycling conditions as the initial PCR reaction. The resulting re-PCR products were then sequenced at the University of Exeter.

3.2.4 Analysis of sequencing results

All sequenced plasmid DNA templates were analysed by first identifying SP6 or T7 promoter primer sequences, and M13 primer sequences, and then identifying the insert sequences. The plasmid insert sequences were entered into NCBI Nucleotide Basic Local Alignment Search Tool (BLASTN) to confirm that they were actual HER2 mRNA sequences (NCBI, 2010). After sequences were confirmed to be HER2, insert sequences were then aligned using Clustal Omega Multiple Sequence Alignment Tool (European Bioinformatics Institute, 2010) with the reference HER2 sequence to determine homology between sequences obtained from GenBank and sequences obtained from cloned inserts of PCR amplified products.

3.3 Results

3.3.1 Detection of HER2 protein in cell lines by Immunohistochemistry

Immunohistochemistry was performed to give a general overview of HER2 expression in cell lines. Three breast cancer cell lines; SKBR3 (HER2 3+; ER-; PR-), BT-20 (HER2-; ER-; PR-) and MCF-7 (HER2-, ER+; PR+) were used for immunohistochemical analysis. The
antibodies used for detection of HER2 bind to the extracellular domain while the ER and PR antibodies bind to the nucleus. HER2 antibodies are not known to bind to a specific HER2 isoform, and may therefore be positive to the generic wild-type HER2, regardless of any isoforms which may be co expressed in the same cells. Monoclonal antibodies used in this study and their specificities are listed in Table 3.1.

SKBR-3 cell line: Immunohistochemical analysis of SKBR3 cell line showed the presence of membrane staining with SP3 and CB11 monoclonal antibodies (Figures 3.2 and 3.3), which is indicative of HER2 positivity. The absence of nuclear staining of SKBR3 cells with 6F11 and PGR636 antibodies (Figures 3.4 and 3.5) show negative results for Oestrogen and Progesterone receptors respectively.

BT-20 cell line: Immunohistochemical analysis of BT-20 cell line showed the absence of membrane staining with SP3 and CB11 antibodies (Figures 3.2 and 3.3), which is indicative of HER2 negativity. The absence of nuclear staining of BT-20 cell line with 6F11 and PGR636 antibodies (Figures 3.4 and 3.5) is also indicative of negativity of oestrogen and progesterone receptors respectively.

MCF-7 cell line: Immunohistochemical analysis of MCF-7 cell line showed the absence of membrane staining with SP3 and CB11 antibodies (Figures 3.2 and 3.3), which is indicative of HER2 negativity. The presence of nuclear staining in MCF-7 cell line with CB11 and PGR636 antibodies (Figures 3.4 and 3.5) is indicative of oestrogen and progesterone receptor positivity, respectively. Negative controls used in immunohistochemistry, stained negative for SP3 antibody (Figure 3.6).
The results obtained from immunohistochemistry correlate well with previous HER2 studies on the cell lines used in this study (Rhodes et al., 2010) However, overall protein expression as determined by IHC may not be conclusive in determining the patients’ splice variant status, and therefore may not be sufficient in predicting patients’ response to treatment.

Figure 3.2: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using SP3 monoclonal antibody. Membrane staining of SKBR3 indicates HER2 positivity (magnification: x 40).
Figure 3.3: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using CB11 monoclonal antibody. Membrane staining of SKBR3 indicates HER2 positivity (magnification: x 40).
Figure 3.4: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using 6F11 monoclonal antibody. Nuclear staining of MCF-7 indicates ER positivity (magnification: x 40).
Figure 3.5: Immunohistochemical staining of cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using PGR636 monoclonal antibody. Nuclear staining of MCF-7 indicates PR positivity (magnification: x 40).
Figure 3.6: Negative controls used in immunohistochemistry showing cell lines SKBR3 (A), BT-20 (B) and MCF-7 (C) using SP3, CB11 and 6F11 monoclonal antibodies respectively (magnification: x 40).

3.3.2 Detection of HER2 mRNA expression in cell lines by RT-PCR

The Polymerase Chain Reaction provides a rapid and sensitive method for amplifying a specific segment of complementary DNA (cDNA) produced by reverse-transcription of RNA extracted from cells or tissues, making it possible to delineate a template sequence or a specific region of a gene of interest. The specified sequence corresponds to the amplicon size of the PCR product. PCR has also been used to identify alternative
splice isoforms in genes where products which do not correspond to the expected amplicon size have been obtained.

RT-PCR analysis of cell lines shows that there are numerous potential alternative splice variants in HER2. In addition to the already published exon 16 deleted HER2 isoform using primer pairs NP1/NP2 and NP5/NP6 (Figures 3.15 and 3.16) (Kwong & Hung, 1998), multiple bands were observed in exons 12-15 with primers E12F/E15R (Figure 3.10), exons 15-19 with primers E15F/E19R, and exons 19-22 with primers E19F/E22R (Figure 3.12). To ensure that the RT-PCR results were from actual HER2 mRNA and not genomic DNA, all RNA templates were treated with RQ1 RNase-Free DNAse (Promega, UK). As an added control, a no RT template was added to each reverse transcription reaction, and the template was PCR amplified along with the experimental cDNA samples. RT-PCR results are representative of three biological repeats.

Figure 3.7: RT-PCR amplification of HER2 exons 3-6 (primer pair E3F+E6R) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3 and MDA-MB-453 show expected band sizes at 478 base pairs. Each rung of the hyperladder IV represents 100bp.
Figure 3.8: RT-PCR amplification of HER2 exons 6-9 (primer pair E6F+E9R) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3 and MDA-MB-453 show expected band sizes at 441bp base pairs. Each rung of the hyperladder IV represents 100bp.

Figure 3.9: RT-PCR amplification of HER2 exons 9-12 (primer pair E9F+E12R) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3 and MDA-MB-453 show expected band sizes at 454 base pairs. Each rung of the hyperladder IV represents 100bp.
Figure 3.10: RT-PCR amplification of HER2 exons 12-15 (primer pair E12F+E15R) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3 and MDA-MB-453 show expected band sizes at 432 base pairs, and MDA-MB-453 shows two unexpected additional bands, indicative of potential novel alternative splice variants. Each rung of the hyperladder IV represents 100bp.

Figure 3.11: RT-PCR amplification of HER2 exons 15-19 (primer pair E15F+E19R) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3 and MDA-MB-453 show expected band sizes at 480 base pairs; SKOV-3, SKBR-3, and MDA-MB-453 show one unexpected additional band, indicative of potential novel alternative splice variants. Each rung of the hyperladder IV represents 100bp.
Figure 3.12: RT-PCR amplification of HER2 exons 19-22 (primer pair E19F+E22R) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3 and MDA-MB-453 show expected band sizes at 450 base pairs; SKOV3 and MDA-MB-453 shows two unexpected additional bands, indicative of potential novel alternative splice variants. Each rung of the hyperladder IV represents 100bp.

Figure 3.13: RT-PCR amplification of HER2 exons 22-25 (primer pair E22F+E25R) using all six cell lines, and a negative (no RT) control. SKOV3 and MDA-MB-453 show expected band sizes at 489 base pairs. Each rung of the hyperladder IV represents 100bp.
Figure 3.14: RT-PCR amplification of HER2 exons 25-27 (primer pair E25F+E27R) using all six cell lines, and a negative (no RT) control. SKOV3 and MDA-MB-453 show expected band sizes at 450 base pairs. Each rung of the hyperladder IV represents 100bp.

Figure 3.15: RT-PCR amplification of HER2 exons 16-18 (primer pair NP1+NP2) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3, MDA-MB-453 and MDA-MB-361 show expected band sizes at 266 base pairs; MDA-MB-453 and MDA-MB-361 show one expected additional band at approx. 224bp. Each rung of the hyperladder IV represents 100bp.
Figure 3.16: RT-PCR amplification of HER2 exons 16-18 (primer pair NP5+NP6) using all six cell lines, and a negative (no RT) control. SKOV3, SKBR3, MDA-MB-453 and MDA-MB-361 show expected band sizes at 146 base pairs; SKBR3 shows one additional band at approximately 104bp. Each rung of the hyperladder IV represents 100bp.

Quality control results for cDNA and RNA templates used for the assessment of HER2 mRNA expression are shown in tables 3.1 and 3.2.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ng/µl</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOV3</td>
<td>1019.6</td>
<td>1.99</td>
</tr>
<tr>
<td>SKBR3</td>
<td>696.8</td>
<td>1.95</td>
</tr>
<tr>
<td>BT-20</td>
<td>441.2</td>
<td>1.90</td>
</tr>
<tr>
<td>MCF-7</td>
<td>501.7</td>
<td>1.93</td>
</tr>
<tr>
<td>MDA-MB-453</td>
<td>494.3</td>
<td>1.94</td>
</tr>
<tr>
<td>MDA-MD-361</td>
<td>432.2</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Table 3.1: RNA concentrations and absorbance at 260/280 for each cell line. The ratio of absorbance at 260/280 is used to assess the purity of RNA and DNA. A ratio of ~2.0 and ~1.8 is generally accepted as ‘pure’ for RNA and DNA respectively.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ng/µL</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOV3</td>
<td>1718.3</td>
<td>1.8</td>
</tr>
<tr>
<td>SKBR3</td>
<td>1709.9</td>
<td>1.8</td>
</tr>
<tr>
<td>BT-20</td>
<td>2036.4</td>
<td>1.77</td>
</tr>
<tr>
<td>MCF-7</td>
<td>1764.7</td>
<td>1.78</td>
</tr>
<tr>
<td>MDA-MB-453</td>
<td>1666.8</td>
<td>1.79</td>
</tr>
<tr>
<td>MDA-MD-361</td>
<td>1661.3</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Table 3.2: cDNA concentrations and absorbance at 260/280 for each cell line. The ratio of absorbance at 260/280 is used to assess the purity of RNA and DNA. A ratio of ~2.0 and ~1.8 is generally accepted as ‘pure’ for RNA and DNA respectively.
3.3.3 Analysis of HER2 cDNA amplicon sequences

To ensure that the results obtained from the sequences were actual HER2 mRNA, the sequences were entered into NCBI Nucleotide Basic Local Alignment Search Tool (BLASTN) after which the insert sequences were then aligned to the full HER2 sequence using Clustal Omega to determine homology between sequences obtained from GenBank and sequences obtained from cloned inserts of PCR amplified products. Bioinformatic analysis was then carried out on the regions of the HER2 gene with potential alternative splice variants observed as loss of entire exons (cassette exons) or loss of part of an exon (alternative 3’ or 5’ splice sites). Full sequence alignment of the rest of the HER2 exons resulting from the RT-PCR products which did not show multiple bands, or which did not have alternative splice variants, are found in Appendix A.
HER2 Exons 12-15; top band (Primers E12F + E15R)

![Sequence alignment of HER2 insert with the reference HER2 exons 12-15 using Clustal Omega. The alignment shows the expected gene sequence for the region amplified in the top band using primer pairs E12F + E15R.](image)

Figure 3.17: Sequence alignment of HER2 insert with the reference HER2 exons 12-15 using Clustal Omega. The alignment shows the expected gene sequence for the region amplified in the top band using primer pairs E12F + E15R.
HER2 Exons 12-15; bottom band (Primers E12F + E15R)

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>TGGCCGCTACTGCACTGCGACACCATTGGGTGCGTACGTGCCATGCGTGGCTGCTCAGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>TGGCCGCTACTGCACTGCGACACCATTGGGTGCGTACGTGCCATGCGTGGCTGCTCAGT</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>GAGGGAGCTGGGAGTGGGAGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>GAGGGAGCTGGGAGTGGGAGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>CACGGGTTGCGGAGTGGGAGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>CACGGGTTGCGGAGTGGGAGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>CGGCCGAGAGGAACCTGGGAGCAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>CGGCCGAGAGGAACCTGGGAGCAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>GCACCGTTGAGGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>GCACCGTTGAGGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>GGAGTGCCGAGGAAATCGCGAGTACTGCGAGGAGCTCCCGAGAAGTATGGAATTGCGAGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>GGAGTGCCGAGGAAATCGCGAGTACTGCGAGGAGCTCCCGAGAAGTATGGAATTGCGAGG</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>GCACCTTTGCGGAGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>GCACCTTTGCGGAGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>AGCCGAGGCGGCTACGAGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>AGCCGAGGCGGCTACGAGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>CGCGTTGCAGGCGGGTTGAGGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>CGCGTTGCAGGCGGGTTGAGGAAGGACAGGCTGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

HER2 FL

<table>
<thead>
<tr>
<th>HER2 FL</th>
<th>TGAGGAGGCGGCGATGCCAGGCGGCTAGGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>TGAGGAGGCGGCGATGCCAGGCGGCTAGGCGGCTCTCATGCAACCCTACAAAGGAGCAGGCTGCGCAGCA</td>
</tr>
</tbody>
</table>

Figure 3.18: Sequence alignment of HER2 insert with the wild type HER2 exons 12-15 using Clustal Omega. The alignment shows the deletions in the gene sequence for the region amplified in the top band using primer pairs E12F + E15R. The missing sequence corresponds with the skipping of exon 13.
HER2 Exons 15-19; top band (Primers E15F + E19R)

![Sequence alignment of HER2 insert with the wild type HER2 exons 15-19 using Clustal Omega. The alignment shows the expected gene sequence for the region amplified in the top band using primer pairs E15F + E19R.](image)

Figure 3.19: Sequence alignment of HER2 insert with the wild type HER2 exons 15-19 using Clustal Omega. The alignment shows the expected gene sequence for the region amplified in the top band using primer pairs E15F + E19R.
HER2 Exons 15-19; lower band (Primers E15F + E19R)

<table>
<thead>
<tr>
<th>HER2FL</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAGGCTGACACAAGTTGTGGATCTTGCCACATATAGGAGGCCCTCTTTGCTAGGCCGCGC</td>
<td>60</td>
</tr>
<tr>
<td>GAGGCTGACACAAGTTGTGGATCTTGCCACATATAGGAGGCCCTCTTTGCTAGGCCGCGC</td>
<td>60</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>TCCCCAGACAGTGGAAGCTATCCAGGCTCTTACAGG GAATTTTCAAGTAAGG</td>
<td>120</td>
</tr>
<tr>
<td>TCCCCAGACAGTGGAAGCTATCCAGGCTCTTACAGG GAATTTTCAAGTAAGG</td>
<td>120</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>GAGGCGCATGGACTACCACCTTCCCACATACGGAGGGCTGAGATTCTGGGACCTGGAGAC</td>
<td>180</td>
</tr>
<tr>
<td>GAGGCGCATGGACTACCACCTTCCCACATACGGAGGGCTGAGATTCTGGGACCTGGAGAC</td>
<td>180</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>AGGCGTGACGAGACGCTACACCTGCTCGAAGGACCCAAGTTGAGAGAAGCAGC</td>
<td>240</td>
</tr>
<tr>
<td>AGGCGTGACGAGACGCTACACCTGCTCGAAGGACCCAAGTTGAGAGAAGCAGC</td>
<td>240</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>GGGCTCTGGGCAGCTGCTGAGATTTTACAGGACGAGCGGCGGCA</td>
<td>300</td>
</tr>
<tr>
<td>GGGCTCTGGGCAGCTGCTGAGATTTTACAGGACGAGCGGCGGCA</td>
<td>300</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>CAGAAGACAAGCAAGACACAGAGATGCGAGAAGTTGAGAGAAGCAGC</td>
<td>360</td>
</tr>
<tr>
<td>CAGAAGACAAGCAAGACACAGAGATGCGAGAAGTTGAGAGAAGCAGC</td>
<td>360</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>CTGACATGTGAGGAGAGCAGTGGCAACGCTGGGAAGGAGAGAAGCAGC</td>
<td>420</td>
</tr>
<tr>
<td>CTGACATGTGAGGAGAGCAGTGGCAACGCTGGGAAGGAGAGAAGCAGC</td>
<td>420</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>CTGAGAACAAGTCGATGGATACGCTGCACTGCAGAGAGAAGCAGC</td>
<td>480</td>
</tr>
<tr>
<td>CTGAGAACAAGTCGATGGATACGCTGCACTGCAGAGAGAAGCAGC</td>
<td>480</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>ATCCCTGATGCAGGATGTTGAGGAAAATTTCCAGGCTGAGAGAGGAGGAA</td>
<td>540</td>
</tr>
<tr>
<td>ATCCCTGATGCAGGATGTTGAGGAAAATTTCCAGGCTGAGAGAGGAGGAA</td>
<td>540</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>HER2FL</td>
<td>INSERT</td>
</tr>
<tr>
<td>TCCCCCAAGACAAACAAAGAGAATCCATAGAC</td>
<td>570</td>
</tr>
<tr>
<td>TCCCCCAAGACAAACAAAGAGAATCCATAGAC</td>
<td>570</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.20: Sequence alignment of HER2 insert with the wild type HER2 exons 15-19 using Clustal Omega. The alignment shows the deletions in the gene sequence for the region amplified in the top band using primer pairs E15F + E19R. This deletion corresponds with the use of an alternative 3’ splice site in exon 18.
HER2 Exons 15-18; top band (Primers NP1 + NP2)

Figure 3.21: Sequence alignment of HER2 exons 15-18 using Clustal Omega. The alignment shows the expected gene sequence for the region amplified in the top band using primer pairs NP1 + NP2.
HER2 Exons 15-18; bottom band (Primers NP1 + NP2)

Figure 3.22: Sequence alignment of HER2 exons 15-18 using Clustal Omega. The alignment shows deletions in the gene sequence for the region amplified in the bottom band using primer pairs NP1 + NP2. This deletion corresponds to the skipping of exon 16.
HER2 Exons 15-17; Top band (Primers NP5 + NP6)

<table>
<thead>
<tr>
<th>HER2</th>
<th>GAGGCTCAAGCCATCTGCGTGGCCTGAGCTCCACTTAAAGGAACCCCGCTTTCCTGCGTGGGCCCAGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>GAGGCTCAAGCCATCTGCGTGGCCTGAGCTCCACTTAAAGGAACCCCGCTTTCCTGCGTGGGCCCAGG</td>
</tr>
</tbody>
</table>

Figure 3.23: Sequence alignment of HER2 exons 15-17 using Clustal Omega. The alignment shows the expected gene sequence for the region amplified in the top band using primer pairs NP5 + NP6.
HER2 Exons 15-17; Bottom band (Primers NP5 + NP6)

<table>
<thead>
<tr>
<th>HER2</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAGGCTGACCA6TGTTGCGCTTGCCCACTATAAAGACCCCCTTGTTGCGGCCGCG</td>
<td>GAGGCTGACCA6TGTTGCGCTTGCCCACTATAAAGACCCCCTTGTTGCGGCCGCG</td>
</tr>
</tbody>
</table>

Figure 3.24: Sequence alignment of HER2 exons 15-17 using Clustal Omega. The alignment shows deletions in the gene sequence for the region amplified in the bottom band using primer pairs NP5 + NP6. This deletion corresponds to the skipping of exon 16.

Of all the additional bands observed in RT-PCR experiments, only the bands obtained with E12F+E15R, E15F+E19R, NP1+NP2 and NP5+NP6 were successfully sequenced. Additional bands were observed with primer pairs E19F+E22R, and E12F+E15R. Sequencing of these bands, however, did not produce reliable results. This may have been as a result of inadequate template concentrations required for the reliable sequencing of plasmids or artefacts produced in the cDNA amplification process. RT-PCR amplification of exons 1 and 2 did not produce bands after agarose gel electrophoresis. Sequence alignments for all other primer pairs for the HER2 gene where additional bands were not observed, can be found in Appendix A.
3.4 Summary

Analyses of SKBR3, BT-20 and MCF-7 cell lines by immunohistochemistry show that
HER2 is expressed in SKBR-3 cell lines, and not in BT-20 and MCF-7 cell lines. This is
consistent with published studies on the HER2 expression in these cell lines (Figures
3.2-3.6). Immunohistochemical testing of breast tumours is a reliable method of
testing for HER2 status in breast cancer patients. However, overall protein expression
as determined by IHC may not be conclusive in determining a patient’s response to
treatment.

RT-PCR analysis of cell lines shows that there are novel alternative splice variants in
HER2. In addition to the already published exon 16 deleted HER2 isoform, two novel
splice variants of HER2 have been successfully characterised; a cassette exon in exon
13, in which the entire exon is skipped, and an alternative 5’ splice site in exon 18, in
which the 42 bases corresponding with 14 amino acids at the 3’ end of the exon have
been skipped.
CHAPTER 4. BIOINFORMATIC ANALYSIS OF HER2 AND HER2

ALTERNATIVE SPlice VARIANTS

4.1 Introduction

The Human Epidermal Growth Factor Receptor 2 (HER2) gene (accession number NM_004448) was first isolated in 1985 (Coussens et al., 1985; Semba et al., 1985; Bargmann, Hung & Weinberg, 1986) in rat NIH3T3 cells as an oncogene called neu, and shown to reside on chromosome 17 (Figure 4.1). HER2 is classified as one of the most important genes in human cancer, because of its frequent amplification in cancers such as breast carcinomas (Shih et al., 1981). Schechter et al (1985) showed that the neu gene encoded a protein of relative molecular mass 185,000 (p185) (Schechter et al., 1985). The neu gene was found to share significant similarity to the avian erythroblastosis virus (v-erbB), and was homologous with the cellular gene (c-erbB) which encodes EGFR (Downward et al., n.d.; Vennström & Bishop, 1982; Yamamoto et al., 1983). Schechter et al (1985) also demonstrated that the homology between the proteins encoded by the neu and c-erbB genes were limited to the kinase domain of the EGFR protein, and the human v-erbB-related sequence was then identified, and shown to be distinct from EGFR (Yamamoto et al., 2011). The HER2 nucleic acid sequence is approximately 4.8kb long, the open reading frame encodes a 1255 amino acid protein approximately 185kDa in mass. An extensive bioinformatic analysis of the HER2 gene and protein structure is available on databases such as ScanProsite, UniprotKB and NCBI. With the discovery of novel splice variants of HER2 as described in chapter 2, the use of bioinformatics was interrogated to investigate the potential
functional and structural differences between alternative splice variants of \textit{HER2}, and the regulation of splicing in the \textit{HER2} gene.

4.2 Objectives

1. To review the literature and databases on the bioinformatics of \textit{HER2} gene and protein.
2. To use bioinformatics to analyse the functional properties of the wild-type \textit{HER2} gene.
3. To use bioinformatics to understand the role and function of \textit{HER2} alternative splice variants in comparison to the wild-type \textit{HER2}.

4.3 Methods

4.3.1 \textit{HER2} sequence retrieval

The \textit{HER2} mRNA sequence was obtained using NCBI Refseq®, a genetic sequence database which contains an annotated collection of all publicly available DNA sequences. \textit{HER2} exons were configured using the Friendly Alternative Splicing and Transcripts DataBase (FastDB; GenoSplice technology, Paris). The \textit{HER2} protein sequence was obtained using the UniprotKB blast tool, a database which consists of high quality and freely accessible resource of protein sequences and their functional information. The \textit{HER2} protein sequence was also derived from the \textit{HER2} RNA sequence using the ExPASy translate tool (Swiss Institute of Bioinformatics).
open reading frame was predicted using ExPASy Translate Tool and the NCBI ORF finder.

4.3.2 Alignment of HER2 transcript variants and isoforms

HER2 transcript variants and HER2 isoforms obtained from the NCBI database were aligned using the Clustal Omega multiple sequence alignment tool (Appendix B). Novel HER2 splice variants and their isoforms characterised during this study were aligned in comparison with the HER2 transcript variant 1 mRNA (Accession number NM_004448) using the Clustal Omega multiple sequence alignment tool (Appendix B).

4.3.3 Analysis of potential splice factor binding sites in HER2 alternative splice variants.

SpliceAid, a database of experimentally assessed human RNA target sequences (introni.it, 2013), was used to identify motifs that may predict the pattern of RNA splicing by identifying splice factors which are involved in HER2 splicing. The SpliceAid database was used to predict binding motifs for exonic splice enhancers (ESE), Intronic splice silencers (ISS), exonic splice silencers (ESS) and Intronic splice enhancers (ISE) within the alternatively spliced exons and their flanking introns.
4.3.4 Structural and functional characterisation of the wild-type

HER2 protein

Structural and functional characterisation of the wild-type *HER2* protein was carried out by entering the amino acid sequence of *HER2* isoform 1 (accession number P02464) into various bioinformatic databases; this variant encodes the longest protein isoform, and has been chosen as the ‘canonical’ *HER2* sequence. All comparative analyses in this study have been made in reference to it. The *HER2* protein sequence analysis was carried out using UniprotKB, and the prediction of *HER2* domain structure and function was obtained using ScanProsite. The Protein Families (Pfam) database (Wellcome trust, Sanger Institute, Cambridge) was used to predict the functional domains of *HER2* and their amino acid sequences. The secondary structure of *HER2* was predicted using the PSIPRED programme. The *HER2* protein sequence was then entered into the Protein Homology/Analogy Recognition Engine V 2.0 (Phyre\(^2\)) programme to predict its tertiary structure. ProtParam was used to predict the molecular weight, half-life and amino acid composition of *HER2*.

4.4. Results

4.4.1 *HER2* RNA sequence analysis

The NCBI Genbank® nucleotide search using the search term ‘*HER2*’ returned the following results:
• Definition: *V-erb-b2* avian erythroblastic leukemia viral oncogene homolog 2 (*ERBB2*), transcript variant 1, mRNA.

• Accession: NM_004448.

• Source organism: Homo sapiens.

• Location: 17q12.

• Genomic sequence: 17; NC_000017.11 (39688140...39728662) reference GRCH38 p13 primary assembly.

HER2 is flanked upstream by post-GPI attachment to proteins 3 (*PGAP3*) and migration and invasion enhancer 1 (*MIEN1*), and downstream by titin-cap (*TCAP*), Phenylethanolamine N-methyltransferase (*PNMT*), microRNA 4728 (*MIR4728*), and growth factor receptor-bound protein 7 (*GRB7*) (Figure 4.1).

Figure 4.1. Schematic representation of the location of *HER2* gene on chromosome 17, and flanking genes.
Six transcript variants of HER2 mRNA were obtained from the NCBI database;

1. *Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 1, mRNA (Accession number NM_004448)*: This 4,664 base pair transcript encodes a protein known as HER2 isoform a, which represents the longest HER2 protein isoform.

2. *Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 2, mRNA (Accession number NM_001005862)*: The HER2 transcript variant 2 is 4,889 base pairs long and encodes a protein known as HER2 isoform b. The HER2 transcript variant 2 lacks a portion of the 5′ coding region, and initiates translation at a downstream start codon, resulting in a shorter N terminus, compared to isoform a.

3. *Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 3, mRNA (Accession number NM_001289936; XM_006721766)*: The HER2 transcript variant 3 is 4,940 base pairs long and encodes a protein known as HER2 isoform c. Unlike the transcript variant 1, the HER2 transcript variant 3 has an alternative 5′ UTR and 5′ coding region, resulting in an isoform with a shorter N-terminus compared to isoform a.

4. *Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 4, mRNA (Accession number NM_001289937)*: The HER2 transcript variant 4 is 4,411 base pairs long and encodes a protein known as the HER2 isoform d. This variant lacks an exon in
the 3’ coding region, resulting in a translational frame shift. The resulting protein isoform has a distinct and shorter C-terminus compared to isoform a.

5. *Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 5, mRNA (Accession number NM_001289938):* The HER2 transcript variant 5 is 2,590 base pairs long and encodes a protein known as the HER2 isoform e. This variant has multiple coding differences, and differs in the 5’ and 3’ UTRs, compared to variant 1. The resulting isoform has a shorter N-terminus and a truncated C-terminus, compared to isoform a.

6. *Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 6, long non-coding RNA (Accession number NR_110535):* This 4,998 base pair transcript variant has an alternative 5’ splice site compared to the HER2 transcript variant 1. The HER2 variant 6 is designated as a non-coding RNA because use of the 5’-most expected translation start codon renders the transcript a candidate for nonsense-mediated mRNA decay (NMD).

The RNA sequences of all six HER2 transcript variants were compared using Clustal Omega multiple sequence alignment tool (Appendix B).

4.4.2 HER2 protein sequence analysis

Four isoforms of HER2 were obtained from the NCBI database. The protein sequences of the above HER2 transcripts were also derived from their mRNA sequences using the Expasy Translate tool.
1. **HER2 isoform 1** (accession number P042626; P04626-1) is a 1255 amino acid protein, encoded by Homo sapiens v-erb-b2 Avian Erythroblastic Leukaemia Viral Oncogene Homolog 2 (ERBB2), Transcript Variant 1, mRNA (Accession number NM_004448). This isoform is chosen as the putative (wild-type) HER2 sequence. All positional and comparative analyses of HER2 and HER2 splice isoforms are made with reference to this isoform.

2. **HER2 isoform 2** (accession number P04626-2) is 611 amino acids long, and is also known as CTF-611. This isoform is produced by alternative initiation at Met-611 of isoform 1, and is missing amino acids 1-610 of the canonical HER2 isoform 1 sequence.

3. **HER2 isoform 3** (accession number P04626-3) is 569 amino acids long, and is also known as CTF-687. This isoform is produced by alternative initiation at Met-687 of isoform 1, and is missing amino acids 1-687 compared to HER2 isoform 1.

4. **HER2 isoform 4** (accession number P04626-4) is a 1240 amino acid protein produced by alternative splicing of the 5’ end of isoform 1. The alternative splicing of this HER2 isoform produces replaces amino acids 1-23 (MELAALCRWGLLLALLPPGAAST...) with a shorter, 8-amino acid sequence (MPRGSWK...).

The protein sequences of all HER2 isoforms obtained from NCBI, as well as sequences derived from HER2 transcript variants, were compared using the Clustal Omega multiple sequence alignment tool (Appendix B).
4.4.3 Structural and functional characterisation of the wild-type HER2 (isoform 1)

The analyses of HER2 isoform 1 (P04626) sequence for structural and functional properties predicted a 1255 amino acid protein with a protein kinase region at residues 720-987aa; 2417-2438nt, an ATP nucleotide binding region at residues 726-734; 2438-2461nt, an ATP binding site at 735aa; 2462-2465nt, and an active (proton acceptor) site at 845aa; 2794-2797nt. Further analysis of HER2 protein structure using the UniprotKB analysis tool also predicted the signal peptide at 1-22aa; 260-325nt, the receptor tyrosine kinase domain at 23-1255aa; 326-4664nt, the transmembrane domain at 653-675aa; 2215-2284nt, and the cytoplasmic domain at 676-1255aa, 2285-4664nt. The nuclear localisation signalling region is predicted at 676-689aa; 2285-2326nt (KPNB1 and EEA1 activation site), and a PIK3C2B activation site at 1195-1197aa; 3842-3851nt.

Inputting the HER2 RNA sequence into the Pfam programme returned four distinct domains in the extracellular region of HER2 and one domain in the tyrosine kinase region (Figure 4.2).

- **Receptor L domain:** This domain constitutes subdomains I and III of the HER2 ECD (residues 52-173; 336-468, respectively). The HER2 receptor L domain makes up the bilobal ligand binding site, each domain consisting of a single-stranded right hand β-helix (Garrett et al., 1998).

- **Furin-like cysteine rich domain:** This domain constitutes subdomain III of the HER2 ECD (residues 183-343), and is usually found in eukaryotic proteins that
are involved in signal transduction by receptor tyrosine kinases (Raz, Schejter & Shilo, 1991).

- Growth factor receptor domain: This domain constitutes subdomain IV of the HER2 ECD (residues 510-643). Interaction between the growth factor receptor domain and the furin-like domain regulates the binding of ligands to the receptor L domains (Cho & Leahy, 2002).

- Protein tyrosine kinase domain: Tyrosine kinases are a subclass of protein kinases. This domain (residues 720-976) constitutes an enzyme that can transfer a phosphate group from ATP to a protein in the cell, functioning as an ‘on’ or ‘off switch in a variety of cellular functions (Hanks & Quinn, 1991; Hanks & Hunter, 1995; Hunter & Plowman, 1997).

The Phyre² programme predicted the 3D structure of the HER2 protein, showing the positions of the α-helices and the β-strands (Figure 4.3).

ProtParam predicted HER2 to have a molecular weight of 137910.5Da and an estimated half-life of 30 hours. The amino acid composition of the HER2 protein as predicted by ProtParam is detailed in Table 4.1.
Figure 4.3 Phyre² output showing the 3D structure of HER2. The image is coloured by rainbow from N→C terminus. α-helices are represented by coils and β-strands are represented by arrowed regions.
<table>
<thead>
<tr>
<th>AMINO ACID</th>
<th>OCCURRENCE</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>83</td>
<td>6.60%</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>71</td>
<td>5.70%</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>41</td>
<td>3.30%</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>65</td>
<td>5.20%</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>59</td>
<td>4.70%</td>
</tr>
<tr>
<td>Gln (Q)</td>
<td>62</td>
<td>4.90%</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>77</td>
<td>6.10%</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>101</td>
<td>8.00%</td>
</tr>
<tr>
<td>His (H)</td>
<td>35</td>
<td>2.80%</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>44</td>
<td>3.50%</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>138</td>
<td>11.00%</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>39</td>
<td>3.10%</td>
</tr>
<tr>
<td>Met (M)</td>
<td>23</td>
<td>1.80%</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>35</td>
<td>2.80%</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>109</td>
<td>8.70%</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>73</td>
<td>5.80%</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>67</td>
<td>5.30%</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>15</td>
<td>1.20%</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>35</td>
<td>2.80%</td>
</tr>
<tr>
<td>Val (V)</td>
<td>83</td>
<td>6.60%</td>
</tr>
</tbody>
</table>

Table 4.1 HER2 amino acid composition as predicted by ProtParam.

4.4.4 Analysis of potential splice factor binding sites

HER2 DNA sequences representing alternative spliced exons and their flanking introns were analysed for potential splice factor binding motifs. The results are shown in Figures 4.5-4.7.
Figure 4.4 SpliceAid output for the analysis of splice factor binding motifs in exon 13 and 50 base pairs into the flanking introns. In exon 13 skipping, binding motifs that facilitate exon skipping are considerably more than those which facilitate exon inclusion. Positive scores represent target sequences that facilitate exon definition; exonic splice enhancer (ESE) and intronic splice silencer (ISS) motifs, and negative scores represent target sequences that facilitate intron definition; exonic splice silencers (ESS) and intronic splice enhancer (ISE) motifs. Target RNA sequences for splice factors are represented by histogram. Bars have variable heights and widths related to the binding affinity. The missing exon is highlighted in the DNA sequence.
Figure 4.5 SpliceAid output for the analysis of splice factor binding motifs in exon 16 and 50 base pairs into the flanking introns. In exon 16 skipping, binding motifs that facilitate exon skipping are present in equal numbers as those which facilitate exon inclusion. Positive scores represent target sequences that facilitate exon definition; exonic splice enhancer (ESE) and intronic splice silencer (ISS) motifs, and negative scores represent target sequences that facilitate intron definition; exonic splice silencers (ESS) and intronic splice enhancer (ISE) motifs. Target RNA sequences for splice factors are represented by histogram. Bars have variable heights and widths related to the binding affinity. The missing exon is highlighted in the DNA sequence.
Figure 4.6 SpliceAid output for the analysis of splice factor binding motifs in exon 16 and 50 base pairs into the flanking introns. In exon 13 skipping, binding motifs that facilitate exon skipping are relatively more than those which facilitate exon inclusion. Positive scores represent target sequences that facilitate exon definition; exonic splice enhancer (ESE) and intronic splice silencer (ISS) motifs, and negative scores represent target sequences that facilitate intron definition; exonic splice silencers (ESS) and intronic splice enhancer (ISE) motifs. Target RNA sequences for splice factors are represented by histogram. Bars have variable heights and widths related to the binding affinity. The missing part of exon 18 is highlighted in the DNA sequence.
4.4.5 Post-translational modification of HER2 protein

Post-translational modification is an enzymatic process of covalently altering one or more amino acids in a protein by either addition of functional groups or proteins, proteolytic cleavage of regulatory subunits or degradation of entire proteins. Post-translational modifications occur after translation from mRNA, and after the protein has been released from the ribosome. Post-translational modifications increase the functional diversity of the proteome and are therefore critical in cell biology. Various post-translational modifications include phosphorylation/autophosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, acetylation, lipidation and proteolysis. The only researched post-translational modification of HER2 that was found at this time was Autophosphorylation. In HER2, phosphorylation increases on the tyrosine residues following dimerisation. Autophosphorylation of HER2 occurs in trans; receptor dimerisation occurs when one subunit of the dimeric receptor phosphorylates tyrosine residues on the other subunit (Deng et al., 2007; Li et al., 2007).

4.4.6 Structural and functional characterisation of novel HER2 isoforms

In order to predict the structural and functional differences between the wild-type HER2 and novel HER2 transcript variants identified in this study, a comparative bioinformatic analysis was carried out on individual transcripts and their resulting protein isoforms. The previously identified HER2Δ16 transcript (Kwong & Hung, 1998)
was also analysed. All three splice variants of HER2 are similar to the full length HER2 transcript except for the skipping of exons 13 and 16, and an alternative 5’ splice site in exon 18, respectively. Analysis of the protein isoforms of these splice variants will predict structural differences which may lead to functional changes in the HER2 isoforms.

4.4.6.1. Additional band produced by primers E15F/E19R give rise to a loss of the HER2 ATP binding pocket, and a novel HER2 splice variant HER2ΔATP

The cDNA sequence of the multiple bands obtained using primer pairs E15F/E19R (Figures 3.22 and 3.24) were aligned using Clustal Omega multiple sequence alignment tool, and revealed a deletion of 42 base pairs (lower band) compared to the wild-type HER2 (top band) (Figure 3.11). The amino acid sequences of both bands were obtained using ExPASy translate tool, and revealed an in-frame deletion of 14 amino acids. The structural and functional changes were compared to the HER2 isoform 1 (P04626), and revealed the deletions in the lower HER2 amplicon to be the loss of amino acids 724-737 in the kinase domain of the HER2 protein, which corresponds to the ATP binding domain (the ATP binding domain is represented by amino acids 726-734). This analysis revealed a novel splice isoform containing a deletion of the 3’ end of exon 18, and more specifically, the deletion of the entire ATP binding pocket (Figure 4.8). This novel alternative splice variant of HER2 has been designated HER2ΔATP.
4.4.6.2. **Additional band produced by primers E12F/E15R**

gives rise to the loss of the *HER2* extracellular domain, and a novel

HER2 splice variant *HER2ΔECD*.

The cDNA sequence of the multiple bands obtained using primer pairs E12F/E15R (Figures 3.18 and 3.20) were aligned using Clustal Omega multiple sequence alignment tool, and revealed a deletion of 133 base pairs (lower band) compared to the wild-type *HER2* (top band) (Figure 3.10). The amino acid sequence of the additional band was obtained using ExPASy, and revealed a truncated 645 amino acid *HER2* isoform. This truncated *HER2* shows a loss in amino acids 1-610 in the extracellular domain of *HER2*. Further analysis using ScanProsite and uniprotKB revealed that this novel alternative splice variant encodes a *HER2* protein with conserved active binding sites in the transmembrane domain of *HER2*, but with a loss of 644 amino acids upstream of *HER2* (*HER2ΔECD* consists 652 amino acids). This novel *HER2* alternative splice variant has been designated *HER2ΔECD* (Figure 4.9).
4.4.6.3. Additional bands produced using primer pairs NP1/NP2 and NP5/NP6 give rise to the HERΔ16 isoform corresponding to the loss of subdomain IV of the HER2 extracellular domain

Both NP1/NP2 and NP5/NP6 primer sets have been used previously to identify the HER2Δ16 splice variant (Kwong & Hung, 1998). Although this isoform has been identified in previous studies, the present study identifies the expression of this isoform in SKOV3, SKBR3, and MDA-MB-453 and MDA-MB-361 cell lines. Expression in these cell lines has not been previously documented. Also, the splicing mechanisms underlying the deletion of exon 16 have not been elucidated. The alignment of cDNA sequences of both primer pairs confirms the expression of an alternative HER2 isoform in addition to the wild-type HER2. This isoform shows a loss of exon 16, and has been shown to have increased transformation activity when expressed in HER2 positive breast cancers (Kwong & Hung, 1998). Bioinformatics analysis using scanprosite and
uniprotkb revealed a 1239 conserved peptide with active structural functions (ATB binding domain, and tyrosine kinase domain). The cassette exon occurs in amino acids 634-649, which constitute a portion of subdomain IV of the extracellular domain of the wild-type HER2 protein (Figure 4.10).

Figure 4.9 Analysis of cDNA and amino acid sequences of multiple bands obtained using primer pairs NP1/NP2 and NPS/NP6.

Using the information generated from the analyses of the HER2 splice variants, a schematic was drawn comparing cDNA and protein sequences generated by the different splice variants.

4.5. Analysis of new 5’ splice site boundaries for HER2ΔATP

The loss of 42 nucleotides gives rise to the loss of exactly 14 amino acids. The resulting new 5’ splice site boundaries for HER2ΔATP were analysed in relation to the vertebrate splice site consensus.

In the full length HER2 mRNA, exon 18 splices into exon 19 in this order:
...TCTACAAGGGCATCTGG...

In the new HER2∆ATP mRNA, exon 18 splices into exon 19 in this order:

...GAGGAAGGGCATCTGG...

The vertebrate 5’ splice site consensus is:

...MAGGURAGU...

Where:

M=A or C

R=A or G

U=C or U (T) (Elliot & Ladomery, 2011)

Therefore, the alternative 5’ splice site AAG fits the consensus MAG, which indicates that the new 5’ splice site in HER2∆ATP is a true isoform with conserved vertebrate 5’ splice site.

4.6. Summary

The structural and functional characterisation of HER2 gives a better understanding of the function of the HER2 protein, as well as the effects of alternative splicing in changing the function of the protein through change in structure.

• The loss of exon 13 gives rise to HER2∆ECD, a 645 amino acid protein with a loss of the entire HER2 extracellular binding domain, and consequently a
potential loss of all signalling properties, as the \textit{HER2} signalling domains have been lost in translation. This loss may potentially result in the loss of the binding sites of \textit{HER2}, therefore conferring resistance of \textit{HER2}\textsubscript{ECD} to \textit{HER2} therapies targeted at the \textit{HER2} extracellular domain.

- The loss of exon 16 constitutes the loss of \textit{HER2} to translate amino acids 634 to 649, which is predicted to be within the region containing domain IV of the \textit{HER2} extracellular domain. The \textit{HER2} ECD domain IV is predicted to start and end at amino acids 510 and 643, respectively, and is designated as the growth factor receptor binding domain of \textit{HER2} isoform 1 (P04626). The loss of exon 16 is therefore likely to alter the binding sites of \textit{HER2}, conferring resistance to \textit{HER2} ECD-targeted therapies.

- The utilization of the alternative 5’ splice site of \textit{HER2}\textsubscript{ATP} results in the loss of amino acids 722-735 in the protein tyrosine kinase domain of \textit{HER2} (the \textit{HER2} protein tyrosine kinase domain spans amino acids 720-976). As the \textit{HER2} ECD remains intact, \textit{HER2}\textsubscript{ATP} would still be capable of dimerization; however, the loss of amino acids in the tyrosine kinase region may inhibit phosphorylation and subsequent activation of downstream signalling pathways.

- \textit{HER2}\textsubscript{ATP} is identified here as a true isoform with an alternative 5’ splice site in exon 18 with a conserved 5’ splice site.
CHAPTER 5. EXPRESSION OF HER2 AND HER2 ALTERNATIVE SPLICE VARIANTS IN NORMAL HUMAN TISSUES AND HUMAN BREAST TUMOURS

5.1 Introduction

Established human cancer cell lines derived from tumours are frequently used as *in vitro* tumour models for human cancers, and have been used to significantly advance the understanding of cancer biology (Domcke *et al.*, 2013). Human lesions obtained at surgery represent the real state of the tumour *in vivo*, and can be used to derive certain useful information such as their pathology, gene or biomarker expression, and metabolism. However, they only represent one time point in the evolution of the tumour, and therefore do not lend themselves to much experimentation (van Staveren *et al.*, 2009). Human cell lines are an example of good experimental models as they are known to retain the hallmarks of cancer cells, are easy to propagate and genetically manipulate, and can produce reproducible results when used under well-defined experimental conditions, even after numerous passages (van Staveren *et al.*, 2009).

The use of cell lines in breast cancer studies has resulted in a wealth of information about deregulation of proliferation, migration and apoptosis, as well as the genes and signalling pathways that regulate these processes (Vargo-Gogola & Rosen, 2007; Neve *et al.*, 2006). However, gene expression profiles may sometimes be altered by activating mutations of kinases in cell lines which may not be present in primary breast tumours (van Staveren *et al.*, 2009).
The discovery of new alternative splice variants of *HER2* in *HER2* positive breast cancer cell lines in this study gives rise to a need for further exploration of these splice variants in human samples from a normal tissue panel and clinical cases of *HER2* positive breast cancer.

The use of a normal tissue panel and *HER2* positive breast tumour samples to test for *HER2* expression in this study was in order to investigate tumour-specificity of *HER2* alternative splice variants, particularly *HER2ΔATP* and *HER2ΔECD*. In a study by Mitra *et al* (2009), a panel of 18 normal tissues showed no expression of *HER2Δ16*. However *HER2Δ16* was detected in 51% of a cohort of 85 primary invasive breast tumours. *HER2Δ16* is therefore said to be a tumour-specific *HER2* oncogene (Mitra *et al*., 2009).

For the benefit of this chapter, only the exons which have been confirmed to have alternative splice variants were analysed for the expression of *HER2* and *HER2* splice variant expression in human samples. qPCR probes were designed to target the wild-type *HER2* gene and to detect expression of *HER2ΔECD*, *HER2Δ16* and *HER2ΔATP*.

5.2 Objectives

1. To investigate the expression of *HER2* and *HER2* alternative splice variants in normal tissues.

2. To investigate the expression of *HER2* and novel *HER2* alternative splice variants in *HER2* positive human breast cancer tissues which have been processed by freezing, and samples which have been processed by formalin fixation and embedded in paraffin wax (FFPE).
3. To compare the expression of HER2 and novel HER2 splice variants in normal tissues and human breast cancer tissues.

5.3 Methods

Standard RT-PCR primers listed in Table A1 were used in the amplification of exons 12-15, exons 15-19, and exons 16-18. Taqman probes for the detection of HER2 and HER2 splice variants by quantitative real-time PCR were designed by Primer Design (Southampton, UK). Primer sequences are listed in Table 5.1.

<table>
<thead>
<tr>
<th>PRIMER NAME</th>
<th>SENSE PRIMER</th>
<th>ANTISENSE PRIMER</th>
<th>PRODUCT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERBB2 (Global)</td>
<td>ACCTTCCTTCTCTGTTGAGT</td>
<td>GCCTCAGAATCCACAAAGACT</td>
<td>94</td>
</tr>
<tr>
<td>ERBB2_ex13del</td>
<td>CCAGAGGACGAGTGTGGAG</td>
<td>CGGTCCAAAACAGGTCCTG</td>
<td>120</td>
</tr>
<tr>
<td>ERBB2_ex16del</td>
<td>CAACTGCACCCACTCCCT</td>
<td>CCAAGACCACGACCCCGAG</td>
<td>71</td>
</tr>
<tr>
<td>ERBB2_ex18del</td>
<td>GGAGCTGAGGAAGGGCAT</td>
<td>GGCTTTGGGGATGTGTTTT</td>
<td>94</td>
</tr>
</tbody>
</table>

Table 5.1 Primer sequences for the detection of HER2 and HER2 splice variants by qRT-PCR.

5.3.1 Analysis of cDNA samples from a normal tissue panel for the expression of HER2 and HER2 alternative splice variants

A panel of ten BioBank human cDNA samples consisting of normal tissues was obtained from Primer Design (Southampton, UK). The BioBank is a high quality source of cDNA validated for use in real-time PCR experiments. The cDNA is reverse transcribed from high quality, DNAse treated RNA, from a variety of tissues or cell
cultures, using an optimised blend of oligo-dT and random nonamer primers. BioBank cDNA is therefore free of genomic DNA and PCR inhibitors and covers the widest possible range of RNA and mRNA transcripts in the specified tissue or cell line. BioBank cDNA is useful for expression profiling of newly identified genes, and also as a positive control for real-time PCR. The normal tissue panel consisted of the following tissues:

- Adipose
- Cervix
- Colon
- Kidney
- Liver
- Lung
- Ovary
- Placenta
- Prostate
- Spleen

The panel of normal tissues for used HER2 testing was based on the repository of cDNA samples available for selection. To eliminate variations in results, tissues used were all treated from RNA extraction to reverse transcription, using the same protocol and processed at the same time. Positive control primers were also supplied with the tissue samples, which detect 18s ribosomal RNA. The tissue samples from the normal tissue panel were tested for the expression of HER2 and HER2 splice variants by standard PCR.
5.3.2 Analysis of frozen clinical samples from HER2 positive breast tumours for the expression of HER2 and HER2 alternative splice variants

RNA samples from three matched invasive ductal carcinomas and adjacent normal tissues were obtained from the Wales cancer bank (Cardiff, UK). RNA extracted from frozen blocks is of high quality for use in techniques such as expression microarray systems. The RNA extraction was carried out by the Wales cancer bank using a Qiagen kit or Trizol® method. RNA was supplied as 5µg in 50µl aliquots. RNA quality was assessed by 260/230 and 260/280 ratio using a nanospectrophotometer, and then subjected to quality assurance by Agilent Bioanalyser. Table 5.2 shows a minimum data set for all three frozen samples, which includes the age of the patient, tumour type and grade, size of tumour and HER2 status. For the purpose of this study, the samples were designated 01A, 02A and 03A for the breast tumours and 01B, 02B and 02B for the respective normal breast tissue obtained from each patient.
<table>
<thead>
<tr>
<th>WCB No.</th>
<th>Age</th>
<th>Gender</th>
<th>Tumour Type</th>
<th>Tumour IHC Grade</th>
<th>Max Diameter of Invasive Tumour</th>
<th>Whole Size of Tumour</th>
<th>Receptor Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR6BL0000141</td>
<td>48</td>
<td>F</td>
<td>Invasive Ductal Carcinoma</td>
<td>3+</td>
<td>60</td>
<td>80</td>
<td>ER-/PGR- +</td>
</tr>
<tr>
<td>RR6BL0000198</td>
<td>51</td>
<td>M</td>
<td>Invasive Ductal Carcinoma</td>
<td>3+</td>
<td>25</td>
<td>300</td>
<td>ER+/PGR- +</td>
</tr>
<tr>
<td>RR6BL0000409</td>
<td>43</td>
<td>F</td>
<td>Invasive Ductal Carcinoma</td>
<td>3+</td>
<td>50</td>
<td>54</td>
<td>ER+/PGR+ HER2</td>
</tr>
</tbody>
</table>

Table 5.2 Minimum data set for frozen samples from invasive ductal carcinomas obtained from the Wales cancer bank (Cardiff, UK). For anonymity and data protection, samples were designated numeric codes for the purpose of identification.

Following gDNA treatment and reverse transcription, the RNA samples obtained from the frozen breast tumours were tested for the expression of HER2 and HER2 splice variants by standard PCR and real-time PCR.
5.3.3 Analysis of formalin fixed and paraffin embedded (FFPE) clinical samples from HER2 positive breast tumours for the expression of HER2 and HER2 alternative splice variants.

Total RNA was extracted from FFPE samples using the RNEasy FFPE kit (Qiagen, UK) according to manufacturer’s protocols. After RNA extraction and quantification, 700ng of RNA was reverse transcribed to cDNA using Maxima H Minus Reverse Transcriptase (ThermoScientific, UK) according to the manufacturer’s guidelines. The resulting cDNA was then diluted 1:10 and RT-PCR was performed using GoTaq Hotstart Taq Polymerase (Promega, UK) using the following thermal cycler program: hotstart at 95°C for 2 minutes followed by 39 cycles of 95°C for 1 minute (denaturing), 56°C for 1 minute (annealing), 72°C for 30 seconds (extending), and a final extension of 5 minutes at 72°C. A soaking cycle of 4°C was included to hold the tubes after amplification, prior to agarose gel electrophoresis, or storage at -20°C.

5.4 Results

5.4.1 Expression of HER2 and HER2 alternative splice variants in cDNA samples from a normal tissue panel

Amplification of HER2ΔECD: Figure 5.1 shows RT-PCR amplification of HER2ΔECD in normal human tissues. All tissue types (1-4, 6-10) except liver (5), express the wild-type HER2, but not HER2ΔECD. Liver tissue (5) does not appear to express either the wild-type HER2 or HER2ΔECD.
Figure 5.1: RT-PCR amplification of wild type HER2 and HER2ΔECD (primer pair E12F+E15R) in normal human tissue cDNA (1-10), using MDA-MB-453 cell line as a positive control. Hyperladder IV was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2ΔECD were 432 and 299 base pairs respectively. Each rung of the hyperladder IV represents 100bp.

Amplification of HER2ΔATP: Figure 5.2 shows RT-PCR amplification of HER2ΔATP in normal tissues. All tissue types (1-4, 6-10) except liver (5), appear to express the wild type HER2, but not HER2ΔATP. In addition to the top band which represents the wild type HER2, Adipose, cervix, colon, kidney, ovary and placenta also show the smaller, lower bands which represent HER2ΔATP. Liver tissue (5) does not appear to express either the wild type HER2 or HER2ΔATP.
Figure 5.2: RT-PCR amplification of wild type HER2 and HER2ΔATP (primer pair E15F+E19R) in normal human tissue RNA (1-10), using MDA-MB-453 cell line as a positive control. Hyperladder IV was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2ΔATP were 480 and 438 base pairs respectively. Each rung of the hyperladder IV represents 100bp.

Amplification of HER2Δ16: Figure 5.3 shows RT-PCR amplification of HER2Δ16 in normal tissues. All tissue types (1-4, 6-10) except liver (5), express the wild type HER2, but not HER2Δ16. Liver tissue (5) does not appear to express either the wild type HER2 or HER2Δ16.

Figure 5.3: RT-PCR amplification of wild type HER2 and HER2Δ16 (primer pair NP5+NP6) in normal human tissue RNA (1-10), using MDA-MB-453 cell line as a positive control. Hyperladder V was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2Δ16 were 146 and 104 base pairs respectively.
A negative (no RT) control was also included in all PCR experiments to ensure that PCR amplification was derived from RNA and not genomic DNA or other contaminants. All experiments were run in triplicate to ensure reproducibility.

5.4.2 Expression of HER2 and HER2 alternative splice variants in cDNA obtained from frozen clinical samples

Amplification of wild-type HER2:

Figure 5.5 shows the relative expression of the wild-type HER2 in frozen clinical samples. qPCR analysis shows HER2 expression to be generally higher in the tumours than in the matched normal tissues.
Figure 5.5: qPCR analysis of the expression of wild-type HER2 cDNA in clinical samples. Each histogram bar is representative of one sample and three replicates (n=3). The x axis represents the individual samples (01A, 02A and 03A), and their matched normal breast tissue (01B, 02B and 03B). The error bars represent the standard deviations of the Ct values.

Amplification of HER2ΔECD: Figure 5.6 shows RT-PCR amplification of the wild-type HER2 and HER2ΔECD in cDNA obtained from frozen clinical samples. All three tumours samples express the wild type HER2, but not HER2ΔECD. Figure 5.7 shows the relative expression of HER2ΔECD in the clinical samples by qRT-PCR.

Figure 5.6: RT-PCR amplification of wild type HER2 and HER2ΔECD (primer pair E12F+E15R) in cDNA obtained from frozen tumours, using MDA-MB-453 cell line as a positive control. The samples named 01A, 02A and 03A represent breast tumours, while 01B, 02B and 03B represent the matched normal breast tissue from the same patient, respectively. Hyperladder IV was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2ΔECD were 432 and 299 base pairs respectively. Each rung of the hyperladder IV represents 100bp.
Figure 5.7: qPCR analysis of the expression of HER2ΔECD in clinical samples. Each histogram bar is representative of one sample and three replicates (n=3). The x axis represents the individual samples (01A, 02A and 03A), and their matched normal breast tissue (01B, 02B and 03B). The error bars represent the standard deviations of the Ct values.

Amplification of HER2ΔATP: Figure 5.8 shows RT-PCR amplification of the wild-type HER2 and HER2ΔATP in cDNA obtained from frozen clinical samples. All three tumours samples express the wild type HER2, but not HER2ΔATP. Figure 5.9 shows the relative expression of HER2ΔATP in the clinical samples by qRT-PCR.

Figure 5.8: RT-PCR amplification of wild type HER2 and HER2ΔATP (primer pair E15F+E19R) in RNA samples obtained from frozen tumours, using MDA-MB-453 cell line as a positive control. The samples named 01A, 02A and 03A represent breast tumours, while 01B, 02B and 03B represent the matched normal breast tissue from the same patient, respectively. Hyperladder IV was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2ΔATP were 480 and 438 base pairs respectively. Each rung of the hyperladder IV represents 100bp.

129
Figure 5.9 qPCR analysis of the expression of HER2ΔATP in clinical samples. Each histogram bar is representative of one sample and three replicates (n=3). The x axis represents the individual samples (01A, 02A and 03A), and their matched normal breast tissue (01B, 02B and 03B). The error bars represent the standard deviations of the C\textsubscript{T} values.

Amplification of HER2Δ16: Figure 5.10 shows RT-PCR amplification of the wild-type HER2 and HER2Δ16 in cDNA obtained from frozen clinical samples. All three tumours samples express the wild type HER2, but not HER2Δ16. Figure 5.9 shows the relative expression of HER2ΔATP in the clinical samples.

Figure 5.10: RT-PCR amplification of wild type HER2 and HER2Δ16 (primer pair NP1 + NP2) in cDNA samples obtained from frozen tumours, using MDA-MB-453 cell line as a positive control. The samples named 01A, 02A and 03A represent breast tumours, while 01B, 02B and 03B represent the matched normal breast tissue from the same patient, respectively. Hyperladder IV was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2Δ16 were 266 and 218 base pairs respectively. Each rung of the hyperladder IV represents 100bp.
Figure 5.11: qPCR analysis of the expression of HER2Δ16 in clinical samples. Each histogram bar is representative of one sample and three replicates (n=3). The x axis represents the individual samples (01A, 02A and 03A), and their matched normal breast tissue (01B, 02B and 03B). The error bars represent the standard deviations of the C\textsubscript{T} values.

Figure 5.12: RT-PCR amplification of 18s in normal human tissue RNA and MDA-MB-453 cell line. Each rung of the hyperladder IV represents 100bp.
5.4.3 Expression of *HER2* and *HER2* splice variants in formalin fixed and paraffin embedded (FFPE) clinical samples.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>HER2 STATUS</th>
<th>ng/μl</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2+</td>
<td>19.09</td>
<td>1.79</td>
</tr>
<tr>
<td>15B</td>
<td>2+</td>
<td>284.52</td>
<td>1.94</td>
</tr>
<tr>
<td>21B</td>
<td>3+</td>
<td>86.69</td>
<td>1.93</td>
</tr>
<tr>
<td>24B</td>
<td>3+</td>
<td>140.99</td>
<td>1.89</td>
</tr>
<tr>
<td>27B</td>
<td>3+</td>
<td>367.41</td>
<td>1.93</td>
</tr>
<tr>
<td>28C</td>
<td>3+</td>
<td>359.44</td>
<td>1.95</td>
</tr>
<tr>
<td>31A</td>
<td>2+</td>
<td>179.75</td>
<td>1.98</td>
</tr>
<tr>
<td>34B</td>
<td>3+</td>
<td>135.91</td>
<td>1.94</td>
</tr>
<tr>
<td>35</td>
<td>2+</td>
<td>367.66</td>
<td>1.92</td>
</tr>
<tr>
<td>36B</td>
<td>3+</td>
<td>289.44</td>
<td>1.94</td>
</tr>
<tr>
<td>43A</td>
<td>2+</td>
<td>535.65</td>
<td>2</td>
</tr>
<tr>
<td>53B</td>
<td>3+</td>
<td>385.82</td>
<td>1.91</td>
</tr>
<tr>
<td>75A</td>
<td>2+</td>
<td>144.81</td>
<td>1.91</td>
</tr>
<tr>
<td>86</td>
<td>2+</td>
<td>111.84</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Table 5.3: *HER2* status, quantification and integrity of RNA obtained from FFPE samples. For anonymity and data protection, samples were designated numeric codes for the purpose of identification.
Amplification of HER2ΔECD: Figure 5.13 shows RT-PCR amplification of the wild-type HER2 and HER2ΔECD in cDNA obtained from FFPE clinical samples. When matched against MDA-MB-453 as a positive control, PCR amplification shows wild-type HER2 expressed in samples 21B, 28C, 35 and 36B, and HER2ΔECD expressed in samples 15B, 21b, 28C and 36B.

![Figure 5.13: RT-PCR amplification of wild type HER2 and HER2ΔECD (primer pair E12F+E15R) in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control. The numbers above the lanes (11, 15B, 21B, 24B, 27B, 28C, 31A, 34B, 35, 36B, 43A, 53B, 75A, and 86) represent individual patient samples. The red lines are to aid in identification of expected amplicons. Hyperladder V was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2ΔECD were 432 and 299 base pairs respectively.](image-url)
Amplification of HER2ΔATP: Figure 5.14 shows RT-PCR amplification of the wild-type HER2 and HER2ΔATP in cDNA obtained from FFPE clinical samples. When matched against MDA-MB-453 as a positive control, PCR amplification shows wild-type HER2 expressed in samples 28C, 34B, 35 and 36B, and HER2ΔATP expressed in sample 36B.

![Figure 5.14: RT-PCR amplification of wild type HER2 and HER2ΔATP (primer pair E15F+E19R) in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control. The numbers above the lanes (11, 15B, 21B, 24B, 27B, 28C, 31A, 34B, 35, 36B, 43A, 53B, 75A, and 86) represent individual patient samples. The red lines are to aid in identification of expected amplicons. Hyperladder V was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2ΔATP were 480 and 438 base pairs respectively.](image-url)
Amplification of HER2Δ16: Figure 5.15 shows RT-PCR amplification of the wild-type HER2 and HER2Δ16 in cDNA obtained from FFPE clinical samples. When matched against MDA-MB-453 as a positive control, PCR amplification shows wild-type HER2 expressed in samples 15B, 21B, 27B, 28C, 34B, 35, 36B, 43A, 53B and 75A, and HER2Δ16 expressed in samples 15B, 21B, 28C, 34B, 35, 36B, 43A and 53B.

![RT-PCR amplification of wild type HER2 and HER2Δ16](image1.png)

Figure 5.15: RT-PCR amplification of wild type HER2 and HER2Δ16 (primer pair NP1 and NP2) in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control. The numbers above the lanes (11, 15B, 21B, 24B, 27B, 28C, 31A, 34B, 35, 36B, 43A, 53B, 75A, and 86) represent individual patient samples. The red lines are to aid in identification of expected amplicons. Hyperladder V was used as the DNA marker. The expected amplicon sizes for the wild-type HER2 and HER2Δ16 were 266 and 218 base pairs respectively.

![RT-PCR amplification of 18s in cDNA](image2.png)

Figure 5.16: RT-PCR amplification of 18s in cDNA obtained from FFPE clinical samples, using MDA-MB-453 cell line as a positive control.
5.5 Summary

The use of cell line models in the investigation of alternative splicing in invasive breast and ovarian cancer cell lines in this study has led to the discovery of novel splice variants in invasive cancer. However, it is also important to correlate these findings with expression in human samples. The discovery of HER2 alternative splice variants in human tissues particularly HER2 positive cases of breast cancer, may lead to establishing a potential clinical significance of these new alternative splice variants.

The use of qRT-PCR in this study was in order to give a general overview of the expression of HER2 and HER2 alternative splice variants in tissue samples, alongside the standard RT-PCR. Due to the absence of a control sample, it is not conclusive in this study the tissue-specific changes in the expression levels of HER2 and HER2 alternative splice variants. It is also important to note that the detection by qRT-PCR of HER2 expression and tissue-specific changes in HER2 expression, though they may seem statistically significant, may only be minute changes which can only be verified by the use of a tissue control and absolute quantification of HER2 expression in the controls to compare to the expression in the tissues tested. To summarise:

- In this study, alternative splice variant HER2Δ16 was not detected in normal human tissues (Figure 5.3). This finding is in accordance with current reports (Mitra et al., 2009). The newly identified HER2Δ13 splice variant was also not detected in normal human tissues. However, the HER2ΔATP splice variant appears to be expressed in normal tissues.
• The newly identified alternative splice variants \textit{HER2\Delta ECD} and \textit{HER2\Delta ATP} were also found to be expressed in clinical samples of breast carcinomas which were processed by formalin fixation (Figures 5.13 and 5.14).

• In accordance with findings by Mitra \textit{et al} (2009), this study has identified the expression of the \textit{HER2\Delta16} splice variant in \textit{HER2} positive breast cancer, and for the first time, in FFPE tissues (Figure 5.15).
CHAPTER 6. REGULATION OF HER2 AND HER2 SPLICE VARIANTS IN CELL LINE MODELS

6.1. Introduction

The regulation of normal mRNA splicing is dependent on the recognition of intron-exon boundaries, the removal of intervening introns, and the ligation of exons by the spliceosome (Fackenthal & Godley, 2008). In cancer cells, the fidelity of this process may be altered by defects in several splicing mechanisms (Skotheim & Nees, 2007). In some cases of misregulation of splicing, the aberrant mRNAs and their encoded proteins confer unique functions to the expressing cancer cells, and have unique properties that alter the growth and differentiation properties, and other cellular characteristics of the cell (Kim, Goren & Ast, 2008). The regulation of alternative splicing is still being widely investigated and remains incompletely understood. It is suggested that the disruption of splicing regulatory proteins may play a role in alternative splicing (Kim, Goren & Ast, 2008). Serine and arginine-rich (SR) proteins control the functions of exonic splice enhancers (ESEs), which are purine-rich cis-acting elements that promote splicing of nearby sequences (Fackenthal & Godley, 2008). High levels of phosphorylation of SR proteins are also thought to play a role in inhibiting splicing (Gui et al., 1994). Bioinformatic analysis of binding sites for novel HER2 splice variants and HERΔ16 in chapter 4 revealed potential splice factor binding motifs for ASF/SF2 (SRSF2), which is a splice factor in the cytoplasm phosphorylated by the SR protein SRPK1. The SRPK1 protein kinase is also involved in RNA transcript processing, and increased levels of SRPK1 have been known to play a role in the development of certain cancers such as chronic myelogenous leukemia (CML), colonic and pancreatic...
carcinomas (Salesse, Dylla & Verfaillie, 2004; Hayes, Carrigan & Miller, 2007). There is also evidence that SRPK1 plays an important role in the regulation and of Vascular Endothelial Growth Factor Receptor (VEGF), and is one of the factors responsible for the balance between the pro- and anti-angiogenic isoforms of VEGF (Nowak et al., 2008). In this chapter the SR protein SRSF1 (ASF/SF2) and it phosphorylating protein kinase SRPK1 were investigated by siRNA knockdown, to determine their involvement in the regulation of HER2 and HER2 alternative splice variants using cell line models. Other factors were also investigated, including the role of Hypoxia Inducible Factor 1α (HIF1-α), and the role of Splice factor kinases. HIF1-α is known to function as a tumour suppressor in breast cancer cells (Chiavarina et al., 2010), and can be induced by the use of hypoxia mimetic factors such as Cobalt Chloride (Vengellur & LaPres, 2004). The HIF1-α protein is a transcription factor subunit with intrinsic cellular response to hypoxia. HIF1-α is known to be upregulated by hypoxia, and is known as a gold standard in the detection of hypoxia (Vordermark, Brown & Phil, 2003; Lekas et al., n.d.; Ke & Costa, 2006).

The role of splice factor kinases was investigated by the use of protein kinase inhibitors to the protein kinase inhibitors of interest. The selection protein kinases tested in this study were based on an available repository of protein kinases which have been shown to be related to certain mammalian cancers, or have been shown to regulate certain factors which play a role in cancer. Current group research interests have been focused on investigating the roles of these protein kinase inhibitors in various cancer types including prostate cancer and leukaemia. The kinase inhibitors investigated in this study include SRPIN340, TG003 and INDY. SRPIN340 is a selective inhibitor of SRPK1.
TG003 is a CDC2-like kinase inhibitor. The CDC2-like kinase is a member of an evolutionary conserved family of dual-specificity kinases belonging to the Cyclin-dependent (CDK), Mitogen-activated (MAPK), Glycogen synthase (GSK) and CDK-like kinases (CMGC) (Jain *et al.*, 2014; Rodgers *et al.*, 2010). CDC2-like kinases have been shown to alter the regulation of SR proteins both *in vitro* and *in vivo* (Rodgers *et al.*, 2010). Though a high level regulator of alternative splicing via phosphorylation of SR domains on splice factors, the connection between CDC2-like kinases and breast cancer has not been previously studied.

INDY is an inhibitor of the Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), a protein kinase that is a member of the highly conserved dual-specificity tyrosine phosphorylation regulated kinase (DYRK) family (Courcet *et al.*, 2012). DYRK1A modulates alternative splicing by phosphorylating splice factor SRSF6. It is also known to phosphorylate serine, threonine and tyrosine residues in its sequence. In addition, DYRK1A participates in multiple biological pathways, including the phosphorylation of ASF and the splicing factor SF3b1/SAP155 (Courcet *et al.*, 2012).

6.2. Methods

6.2.1 Treatment of cells with protein kinase inhibitors

To study the effect of protein kinases on *HER2* and *HER2* alternative splice variants, MDA-MB-453, SKBR3 and BT-20 cells were used to investigate the effects of protein kinase inhibitors *SRPIN340, TG003* and *INDY*. Stock solutions were prepared by diluting in DMSO. 1µl of DMSO was also added to each well of the untreated cells to ensure that the changes in the cells after treatments are not due to DMSO in treated cells.
Protein kinase inhibitors were added to cells according to the manufacturer’s guidelines at a final concentration of 10µM, in complete cell culture media, and incubated for 24 and 48 hours, prior to RNA extraction, reverse transcription, and qPCR analysis. In addition to untreated cells, two negative controls were also added to the treatment; SRPIN349 was used as a negative control for SRPIN340, and TG009 was used as a negative control for TG003.

6.2.2 Treatment of cells with hypoxia mimetic factor Cobalt Chloride (CoCl₂)

Cells were treated with CoCl₂ to investigate the effects of hypoxia stimulated by CoCl₂ in breast cancer cell line MDA-MB-453 and SKBR3. A 100mM stock solution was prepared by dissolving CoCl₂ powder in sterile distilled water. CoCl₂ was added to complete cell culture media at final concentrations of 100µM, 200µM, 300µM, 400µM and 500µM. Cells were incubated for 24 hours under normal cell culture conditions before RNA extraction, reverse transcription and qPCR analysis. HIF1-α accumulation in cells following CoCl₂ treatment have been seen to increase within only 6-12 hours in western blot experiments (Ke & Costa, 2006; Al Okail, 2010). Moreover, treatment with CoCl₂ for longer than 24 hours in this study resulted in a high level of cell death which may be due to the high toxicity of CoCl₂ to the cells (Al Okail, 2010). The 24 hour time point was chosen for all CoCl₂ treatments. However the effects of different time points have not been carried out within the scope of this project.
6.2.3 siRNA silencing of SRPK1 and SRSF1 in MDA-MB-453 and SKBR3 cell lines

MDA-MB-453 and SKBR3 cell lines were used to investigate the effects of siRNA knockdown of SRPK1 and SRSF1 on the expression of HER2 and the HER2 alternative splice variants of interest. MDA-MB-453 cell line was used for SRPK1 and SRSF1 knockdown because it showed reliable expression of HER2 and HER2 splice variants and is a reliable source of DNA material for sequencing. SKBR3 cell line was used for SRPK1 and SRSF1 knockdowns because it is HER2 3+ by immunohistochemistry, and represents the highest clinical expression of HER2 based on tests used in HER2 diagnosis.

Cells were seeded onto 6-well tissue culture plates at a density of 0.6x10^6 the day before transfection, and allowed to adhere overnight in their respective media + 10% Foetal Bovine Serum (FBS) + 2mM L-Glutamine, without antibiotics. On the day of transfection, cells were serum-starved for two hours in Opti-MEM I reduced-serum medium (Life Technologies, UK). Transfection was carried out using Dharmafect transfection reagent (Dharmacon, UK) at a volume of 6µl per well. Smartpool siGENOME siRNAs targeted against SRPK1 and SRSF1 were used at a final concentration of 100nM. Smartpool siGENOME siRNA consists of a set of 4 siRNAs provided as a single reagent, providing the advantaged of high specificity and potency. Total RNA was extracted from the cells 24 and 48 hours post transfection, followed by reverse transcription and qRT-PCR.
6.2.4 Western blot analysis

To confirm changes in protein expression following transfection, siRNA knockdowns of *SRPK1* and *SRSF1* in MDA-MB-453 cells were studied using western blot analysis. MDA-MB-453 cells were used for this assay due to its reliability in expressing *HER2* and *HER2* alternative splice variants earlier in this study. Cells were transfected for 24 and 48 hours prior to protein extraction. *SRPK1* mouse monoclonal antibody clone EE-13:sc100443 and *ASF/SF2 (SRSF1)* mouse monoclonal antibody clone 96:sc33652 (Santa Cruz Biotechnology) were used as primary antibodies to *SRPK1* and *SRSF1*, respectively. β-actin was used as a loading control.

<table>
<thead>
<tr>
<th>Antibody Clone</th>
<th>Specificity</th>
<th>Source</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-13:sc100443</td>
<td>SRPK1</td>
<td>Santa Cruz Biotechnology</td>
<td>1µg/mL</td>
</tr>
<tr>
<td>96:sc33652</td>
<td>SRSF1</td>
<td>Santa Cruz Biotechnology</td>
<td>1µg/mL</td>
</tr>
<tr>
<td>sc-47778</td>
<td>β-actin</td>
<td>Santa Cruz Biotechnology</td>
<td>0.1µg/mL</td>
</tr>
</tbody>
</table>

Table 6.1: Antibodies used in Western blotting and their specificities
6.2.5 Real-time qPCR analysis of \textit{HER2}, \textit{HER2} alternative splice variants, \textit{SRPK1} and \textit{SRSF1}.

Real-time qPCR analysis was performed following treatment of cells with protein kinase inhibitors and Cobalt Chloride, and following transfection of cells with \textit{SRPK1} and \textit{SRSF1} siRNAs. Double-dye probes were used for the detection of \textit{HER2} and \textit{HER2} alternative splice variant expression (Table 5.1). Primers for the detection of \textit{SRPK1}, \textit{SRSF1} and \textit{HIF1-\alpha} by sybr green chemistry were designed by primer design UK (Table 6.2). Real-time qPCR assays were normalised against the most stable of 12 reference genes, using the \textit{Normfinder} algorithm.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>5'-3' sequence</th>
<th>Product length</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{SRSF1} sense</td>
<td>GATGGAATTGTGTTTTTCGTTTT</td>
<td>101bp</td>
</tr>
<tr>
<td>\textit{SRSF1} antisense</td>
<td>CATCTACTCGTGCCTGAATCCTT</td>
<td></td>
</tr>
<tr>
<td>\textit{SRPK1} sense</td>
<td>ACAAGCAAGAAAGATCAGAGAT</td>
<td>124bp</td>
</tr>
<tr>
<td>\textit{SRPK1} antisense</td>
<td>CGTTCCATAAGCGTTTGATCC</td>
<td></td>
</tr>
<tr>
<td>\textit{HIF1-\alpha} sense</td>
<td>TGCCACATCATACCATATAGAG</td>
<td></td>
</tr>
<tr>
<td>\textit{HIF1-\alpha} antisense</td>
<td>TGACTCAAGCGACAGATAACA</td>
<td>132bp</td>
</tr>
</tbody>
</table>

Table 6.2: \textit{SRPK1}, \textit{SRSF1} and \textit{HIF1-\alpha} primer sequences.
6.3. Results

6.3.1 Inhibition of SRPK1 by SRPIN340 modulates the expression of HER2 and HER2 alternative splice variants in MDA-MB-453 cell line

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Stability value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>0.072</td>
</tr>
<tr>
<td>ACTB</td>
<td>0.079</td>
</tr>
<tr>
<td>ATP5B</td>
<td>0.113</td>
</tr>
<tr>
<td>B2M</td>
<td>0.138</td>
</tr>
<tr>
<td>CYC1</td>
<td>0.119</td>
</tr>
<tr>
<td>E1F4A2</td>
<td>0.155</td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.035</td>
</tr>
<tr>
<td>RPL13A</td>
<td>0.079</td>
</tr>
<tr>
<td>SDHA</td>
<td>0.171</td>
</tr>
<tr>
<td>TOP1</td>
<td>0.073</td>
</tr>
<tr>
<td>UBC</td>
<td>0.119</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>0.153</td>
</tr>
</tbody>
</table>

Table 6.3: *Normfinder* output for the selection of an optimal reference gene in MDA-MB-453 cells treated with protein kinase inhibitors SRPIN340, TG003 and INDY.
6.3.1.1. MDA-MB-453 cell line

The untreated samples were used as a calibrator to measure the fold change at 24 and 48 hours post-treatment, using GAPDH as a normalisation factor (Table 6.3).

6.3.1.1.1. Changes in the expression of wild-type HER2 following treatment with protein kinase inhibitors

There was no significant change in the expression wild-type HER2 after treatment for 24 hours with SRPIN340 (fold change = 0.94; p≥0.05), TG003 (fold change = 1.07; p≥0.05) and INDY (fold change = 1.07; p≥0.05). Negative controls SRPIN340 and TG009 also showed no change in expression after 24 hours (fold change = 0.97; p≥0.05; and 1.12; p≥0.05, respectively) (Figure 6.1). After 48 hours, a significant increase was observed in the expression of the wild-type HER2 following SRPIN340 treatment (fold change = 0.26; p<0.05). No significant change was observed in the wild-type HER2 after treatment with TG003 and INDY (fold change = 0.93; p≥0.05; and 1.28; p≥0.05, respectively). Negative controls SRPIN349 and TG009 also showed no significant change in the expression of wild-type HER2 following treatment for 48 hours of MDA-MB-453 cells (fold change = 1.22; p≥0.05; and 0.70; p≥0.05, respectively) (Figure 6.2).
Figure 6.1: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in MDA-MB-453 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.

Figure 6.2: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in MDA-MB-453 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.
6.3.1.1.2. Changes in the expression of \textit{HER2}Δ\textit{ECD} following treatment with protein kinase inhibitors

There was no significant change in the expression \textit{HER2}Δ\textit{ECD} after treatment for 24 hours with \textit{SRPIN340} (fold change = 1.0; \(p\geq0.05\)), \textit{TG003} (fold change = 1.0; \(p\geq0.05\)) and \textit{INDY} (fold change = 1.21; \(p\geq0.05\)). Negative controls \textit{SRPIN340} and \textit{TG009} also showed no change in expression after 24 hours (fold change = 0.92; \(p\geq0.05\); and 1.14; \(p\geq0.05\), respectively) (Figure 6.3). After 48 hours, a significant increase was observed in the expression of the \textit{HER2}Δ\textit{ECD} following \textit{SRPIN340} treatment (fold change = 0.13; \(p<0.05\)). A slight reduction in the expression of \textit{HER2}Δ\textit{ECD} was observed after treatment with \textit{TG003} and \textit{INDY} (fold change = 0.4; \(p\geq0.05\); and 0.42; \(p\geq0.05\), respectively). These changes, however, are not statistically significant. Negative controls \textit{SRPIN349} and \textit{TG009} also showed no significant change in the expression of wild-type \textit{HER2} following treatment for 48 hours of MDA-MB-453 cells (fold change = 1.06; \(p\geq0.05\); and 0.7; \(p\geq0.05\), respectively) (Figure 6.4).
Figure 6.3: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in MDA-MB-453 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.

Figure 6.4: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in MDA-MB-453 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
6.3.1.1.3. Changes in the expression of \(\text{HER2}\Delta16\) following treatment with protein kinase inhibitors

There was no significant change in the expression \(\text{HER2}\Delta16\) after treatment for 24 hours with \textit{SRPIN340} (fold change = 1.12; \(p\geq 0.05\)) and \textit{TG003} (fold change = 1.1; \(p\geq 0.05\)). A slight reduction was observed following treatment with \textit{INDY} (fold change = 1.53; \(p\geq 0.05\)). Negative controls \textit{SRPIN340} and \textit{TG009} also showed no change in expression after 24 hours (fold change = 0.98; \(p\geq 0.05\); and 1.23; \(p\geq 0.05\), respectively) (Figure 6.5). After 48 hours, a significant increase was observed in the expression of the \(\text{HER2}\Delta16\) following \textit{SRPIN340} treatment (fold change = 0.13; \(p<0.01\)). A slight reduction in the expression of \(\text{HER2}\Delta16\) was observed after treatment with \textit{TG003} and \textit{INDY} (fold change = 0.5; \(p\geq 0.05\); and 0.42; \(p\geq 0.05\), respectively). These changes, however, are not statistically significant. Negative controls \textit{SRPIN349} and \textit{TG009} also showed no significant change in the expression of wild-type \(\text{HER2}\) following treatment for 48 hours of MDA-MB-453 cells (fold change = 1.0; \(p\geq 0.05\); and 0.9; \(p\geq 0.05\), respectively) (Figure 6.6).
Figure 6.5: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in MDA-MB-453 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C values.

Figure 6.6: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in MDA-MB-453 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C values.
6.3.1.1.4. Changes in the expression of \textit{HER2ΔATP} following treatment with protein kinase inhibitors

There was no significant change in the expression \textit{HER2ΔATP} after treatment for 24 hours with \textit{SRPIN340} (fold change $= 1.0$; $p \geq 0.05$) and \textit{TG003} (fold change $= 0.96$; $p \geq 0.05$). A slight increase was observed following treatment with \textit{INDY} (fold change $= 1.31$; $p \geq 0.05$). Negative controls \textit{SRPIN340} and \textit{TG009} also showed no change in expression after 24 hours (fold change $= 0.96$; $p \geq 0.05$; and 1.16; $p \geq 0.05$, respectively) (Figure 6.7). After 48 hours, a significant increase was observed in the expression of the \textit{HER2ΔATP} following \textit{SRPIN340} treatment (fold change $= 0.13$; $p < 0.01$). A slight increase in the expression of \textit{HER2ΔATP} was observed after treatment with \textit{TG003} and \textit{INDY} (fold change $= 0.4$; $p \geq 0.05$; and 0.42; $p \geq 0.05$, respectively). These changes, however, are not statistically significant. Negative controls \textit{SRPIN349} and \textit{TG009} also showed no significant change in the expression of wild-type \textit{HER2} following treatment for 48 hours of MDA-MB-453 cells (fold change $= 1.0$; $p \geq 0.05$; and 0.9; $p \geq 0.05$, respectively) (Figure 6.8).
Figure 6.7: Effect of protein kinase inhibitors *SRPIN340, TG003* and *INDY* on the *HER2ΔATP* alternative splice variant in MDA-MB-453 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_\text{T} values.

Figure 6.8: Effect of protein kinase inhibitors *SRPIN340, TG003* and *INDY* on the *HER2ΔECD* alternative splice variant in MDA-MB-453 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_\text{T} values.
6.3.1.2 SKBR3 cell line

The untreated cells were used as a calibrator to measure the fold change at 24 and 48 hours post-treatment, using $ATP5B$ as a normalisation factor (Table 6.4).

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Stability value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>0.099</td>
</tr>
<tr>
<td>ACTB</td>
<td>0.110</td>
</tr>
<tr>
<td>ATP5B</td>
<td>0.067</td>
</tr>
<tr>
<td>B2M</td>
<td>0.080</td>
</tr>
<tr>
<td>CYC1</td>
<td>0.098</td>
</tr>
<tr>
<td>E1F4A2</td>
<td>0.119</td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.102</td>
</tr>
<tr>
<td>RPL13A</td>
<td>0.151</td>
</tr>
<tr>
<td>SDHA</td>
<td>0.178</td>
</tr>
<tr>
<td>TOP1</td>
<td>0.085</td>
</tr>
<tr>
<td>UBC</td>
<td>0.170</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>0.080</td>
</tr>
</tbody>
</table>

Table 6.4: Normfinder output for the selection of an optimal reference gene in SKBR3 cells treated with protein kinase inhibitors $SRPIN340$, $TG003$ and $INDY$.
6.3.1.2.1 The expression of wild-type HER2 following treatment with protein kinase inhibitors

There was no significant change in the expression wild-type HER2 after treatment for 24 hours with SRPIN340 (fold change = 0.94; p≥0.05), TG003 (fold change = 1.09; p≥0.05) and INDY (fold change = 0.87; p≥0.05). Negative controls SRPIN340 and TG009 also showed no change in expression after 24 hours (fold change = 0.9; p≥0.05; and 0.91; p≥0.05, respectively) (Figure 6.9). After 48 hours, there was also no significant change in the expression of the wild-type HER2 following treatment with SRPIN340 (fold change = 0.8; p≥0.05), TG003 (fold change = 1.1; p≥0.05) and INDY (fold change = 1.0; p≥0.05). Negative controls SRPIN349 and TG009 also showed no significant change in the expression of wild-type HER2 following treatment for 48 hours of MDA-MB-453 cells (fold change = 0.8; p≥0.05; and 0.9; p≥0.05, respectively) (Figure 6.10).

Figure 6.9: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_{T} values.
Figure 6.10: Effect of protein kinase inhibitors *SRPIN340, TG003* and *INDY* on the wild-type *HER2* in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.

6.3.1.2.2 The expression of *HER2ΔECD* following treatment with protein kinase inhibitors

There was no significant change in the expression *HER2ΔECD* after treatment for 24 hours with *SRPIN340* (fold change = 1.0; \(p \geq 0.05\)), *TG003* (fold change = 1.2; \(p \geq 0.05\)) and *INDY* (fold change = 1.2; \(p \geq 0.05\)). Negative controls *SRPIN340* and *TG009* also showed no change in expression after 24 hours (fold change = 1.0; \(p \geq 0.05\); and 1.2; \(p \geq 0.05\), respectively) (Figure 6.11). After 48 hours, there was also no significant change in the expression of *HER2ΔECD* following treatment with *SRPIN340* (fold change = 0.75; \(p \geq 0.05\)), *TG003* (fold change = 0.75; \(p \geq 0.05\)) and *INDY* (fold change = 1.0; \(p \geq 0.05\)). Negative controls *SRPIN349* and *TG009* also showed no significant change in the
expression of HER2∆ECD following treatment for 48 hours of MDA-MB-453 cells (fold change = 0.8; p≥0.05; and 1.1; p≥0.05, respectively) (Figure 6.12).

Figure 6.11: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2∆ECD alternative splice variant in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
Figure 6.12: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2∆ECD alternative splice variant in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.

6.3.1.2.3 The expression of HER2Δ16 following treatment with protein kinase inhibitors

There was no significant change in the expression HER2Δ16 after treatment for 24 hours with SRPIN340 (fold change = 0.8; p≥0.05), TG003 (fold change = 1.0; p≥0.05) and INDY (fold change = 0.9; p≥0.05). Negative controls SRPIN349 and TG009 also showed no change in expression after 24 hours (fold change = 0.8; p≥0.05; and 0.9; p≥0.05, respectively) (Figure 6.13). After 48 hours, there was also no significant change in the expression of HER2Δ16 following treatment with SRPIN340 (fold change = 1.0; p≥0.05), TG003 (fold change = 1.1; p≥0.05) and INDY (fold change = 0.8; p≥0.05). Negative controls SRPIN349 and TG009 also showed no significant change in the
expression of HER2Δ16 following treatment for 48 hours of MDA-MB-453 cells (fold change = 0.8; p≥0.05; and 0.8; p≥0.05, respectively) (Figure 6.14).

Figure 6.13: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_{T} values.
6.3.1.2.4 The expression of HER2∆ATP following treatment with protein kinase inhibitors

There was no significant change in the expression HER2∆ATP after treatment for 24 hours with SRPIN340 (fold change = 0.96; p≥0.05), TG003 (fold change = 1.1; p≥0.05) and INDY (fold change = 1.1; p≥0.05). Negative controls SRPIN340 and TG009 also showed no change in expression after 24 hours (fold change = 0.9; p≥0.05; and 1.0; p≥0.05, respectively) (Figure 6.15). After 48 hours, there was also no significant change in the expression of HER2∆ATP following treatment with SRPIN340 (fold change = 1.0; p≥0.05), TG003 (fold change = 1.0; p≥0.05) and INDY (fold change = 0.9; p≥0.05). Negative controls SRPIN349 and TG009 also showed no significant change in the
expression of HER2ΔATP following treatment for 48 hours of MDA-MB-453 cells (fold change = 1.0; p≥0.05; and 1.0; p≥1.0, respectively) (Figure 6.16).

Figure 6.15: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔATP alternative splice variant in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
Figure 6.16: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔATP alternative splice variant in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{t} values.

6.3.1.3 BT-20 cell line

The untreated cells were used as a calibrator to measure the fold change at 24 and 48 hours post-treatment, using B2M as a normalisation factor (Table 6.5). Due to the significant changes observed in MDA-MB-453 cells, triple-negative BT-20 cells were treated with protein kinase inhibitors to investigate whether the changes in expression of HER2 and HER2 alternative splice variants were specific to MDA-MB-453 cells or breast cancer cells in general.
<table>
<thead>
<tr>
<th>Gene name</th>
<th>Stability value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>0.160</td>
</tr>
<tr>
<td>ACTB</td>
<td>0.141</td>
</tr>
<tr>
<td>ATP5B</td>
<td>0.160</td>
</tr>
<tr>
<td>B2M</td>
<td>0.100</td>
</tr>
<tr>
<td>CYC1</td>
<td>0.176</td>
</tr>
<tr>
<td>E1F4A2</td>
<td>0.118</td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.171</td>
</tr>
<tr>
<td>RPLI3A</td>
<td>0.151</td>
</tr>
<tr>
<td>TOP1</td>
<td>0.346</td>
</tr>
<tr>
<td>UBC</td>
<td>0.214</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Best gene: B2M (Stability value: 0.100)

Table 6.5: *Normfinder* output for the selection of an optimal reference gene in BT-20 cells treated with protein kinase inhibitors *SRPIN340*, *TG003* and *INDY*.

6.3.1.3.1 The expression of wild-type HER2 following treatment with protein kinase inhibitors

There was no significant change in the expression wild-type HER2 after treatment for 24 hours with *SRPIN340* (fold change = 0.82; p≥0.05). An increased expression in wild-type HER2 expression was observed following treatment with *TG003* and *INDY* (fold change = 0.04; p<0.01; 0.03; p<0.01, respectively). Negative controls *SRPIN340* and
TG009 also showed no change in expression after 24 hours (fold change = 0.8; \(p \geq 0.05 \); and 0.7; \(p \geq 0.05 \), respectively) (Figure 6.17). After 48 hours, there was no significant change in the expression of the wild-type HER2 following treatment with SRPIN340 (fold change = 1.1; \(p \geq 0.05 \)), TG003 (fold change = 1.1; \(p \geq 0.05 \)) and INDY (fold change = 0.9; \(p \geq 0.05 \)). Negative controls SRPIN349 and TG009 also showed no significant change in the expression of wild-type HER2 following treatment for 48 hours of MDA-MB-453 cells (fold change = 1.2; \(p \geq 0.05 \); and 0.9; \(p \geq 0.05 \), respectively) (Figure 6.18).

Figure 6.17: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the wild-type HER2 in BT-20 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
6.3.1.3.2 The expression of HER2ΔECD following treatment with protein kinase inhibitors

There was no significant change in the expression HER2ΔECD after treatment for 24 hours with SRPIN340 (fold change = 1.3; \(p \geq 0.05 \)), TG003 (fold change = 0.8; \(p \geq 0.05 \)) and INDY (fold change = 0.7; \(p \geq 0.05 \)). Negative controls SRPIN340 and TG009 also showed no change in expression after 24 hours (fold change = 1.0; \(p \geq 0.05 \); and 1.0; \(p \geq 0.05 \), respectively) (Figure 6.19). After 48 hours, there was also no significant change in the expression of HER2ΔECD following treatment with SRPIN340 (fold change = 0.7; \(p \geq 0.05 \)), TG003 (fold change = 0.9; \(p \geq 0.05 \)) and INDY (fold change = 0.8; \(p \geq 0.05 \)). Negative controls SRPIN349 and TG009 also showed no significant change in the
expression of HER2ΔECD following treatment for 48 hours of MDA-MB-453 cells (fold change = 1.1; p≥0.05; and 1.0; p≥0.05, respectively) (Figure 6.20).

Figure 6.19: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔECD alternative splice variant in BT-20 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.
6.3.1.3.3 Changes in the expression of HER2Δ16 following treatment with protein kinase inhibitors

There was no significant change in the expression HER2Δ16 after treatment for 24 hours with SRPIN340 (fold change = 1.3; p≥0.05) and TG003 (fold change = 0.8; p≥0.05). An increase in the expression of HER2Δ16 was seen after 24 hour treatment with INDY (fold change = 0.6; p≥0.05). Negative controls SRPIN340 and TG009 showed no change in expression after 24 hours (fold change = 0.8; p≥0.05; and 0.9; p≥0.05, respectively) (Figure 6.21). After 48 hours, there was no significant change in the expression of HER2Δ16 following treatment with SRPIN340 (fold change = 0.9; p≥0.05), TG003 (fold change = 1.1; p≥0.05) and INDY (fold change = 1.0; p≥0.05). Negative controls SRPIN349 and TG009 also showed no significant change in the expression of
HER2Δ16 following treatment for 48 hours of MDA-MB-453 cells (fold change = 0.9; p≥0.05; and 1.0; p≥0.05, respectively) (Figure 6.22).

Figure 6.21: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in BT-20 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
Figure 6.22: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2Δ16 alternative splice variant in BT-20 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.

6.3.1.3.4 Changes in the expression of HER2ΔATP following treatment with protein kinase inhibitors

There was no significant change in the expression HER2ΔATP after treatment for 24 hours with SRPIN340 (fold change = 1.0; p≥0.05) and TG003 (fold change = 0.98; p≥0.05). An increase in the expression HER2ΔATP was observed after 24 hour treatment with INDY (fold change = 0.058; p≥0.05) Negative controls SRPIN340 and TG009 also showed no change in expression after 24 hours (fold change = 1.1; p≥0.05; and 0.9; p≥0.05, respectively) (Figure 6.23). After 48 hours, there was also no significant change in the expression of HER2ΔATP following treatment with SRPIN340 (fold change = 1.0; p≥0.05), TG003 (fold change = 0.98; p≥0.05) and INDY (fold change = 0.92; p≥0.05). Negative controls SRPIN349 and TG009 also showed no significant
change in the expression of HER2ΔATP following treatment for 48 hours of MDA-MB-453 cells (fold change = 0.97; p≥0.05; and 0.84; p≥1.0, respectively) (Figure 6.24).

Figure 6.23: Effect of protein kinase inhibitors SRPIN340, TG003 and INDY on the HER2ΔATP alternative splice variant in BT-20 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_t values.
6.3.2 Induction of hypoxia by hypoxia mimetic factor Cobalt Chloride (CoCl$_2$) inhibits the expression of HER2 and HER2 alternative splice variants in SKBR3 cell line.

The untreated cells were used as a calibrator to measure the fold change at 24 and 48 hours post-treatment, using ACTB as a normalisation factor (Table 6.6). No results are shown for the CoCl$_2$ induction of hypoxia in MDA-MB-453 cell lines because the MDA-MB-453 cells did not thrive during this experiment.
<table>
<thead>
<tr>
<th>Gene name</th>
<th>Stability value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>0.355</td>
</tr>
<tr>
<td>ACTB</td>
<td>0.203</td>
</tr>
<tr>
<td>ATP5B</td>
<td>0.398</td>
</tr>
<tr>
<td>B2M</td>
<td>0.233</td>
</tr>
<tr>
<td>CYC1</td>
<td>0.207</td>
</tr>
<tr>
<td>E1F4A2</td>
<td>0.289</td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.438</td>
</tr>
<tr>
<td>RPL13A</td>
<td>0.284</td>
</tr>
<tr>
<td>SDHA</td>
<td>0.494</td>
</tr>
<tr>
<td>TOP1</td>
<td>0.258</td>
</tr>
<tr>
<td>UBC</td>
<td>0.482</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>0.281</td>
</tr>
</tbody>
</table>

Table 6.6: Normfinder output for the selection of an optimal reference gene in SKBR3 cells treated with Cobalt Chloride.

6.3.2.1. Changes in HIF1-α expression after treatment of SKBR3 cells with Cobalt Chloride for 24 and 48 hours

After 24 hours, and taking the untreated cells as 1, a significant increase was observed in the expression of HIF1-α with 100μM (fold change = 0.59; p<0.001), 200μM (fold change = 0.59; p<0.001), 300μM (fold change = 0.58; p<0.001), 400μM (fold change = 0.6; p<0.01), and 500μM (fold change = 0.7; p<0.01) concentrations of CoCl₂ (Figure 6.25).
After 48 hours, a significant reverse of this effect is observed; HIF1-α expression significantly reduces after treatment with 100µM (fold change = 2.15; p<0.0001), 200µM (fold change = 2.0; p<0.0001), 300µM (fold change 2.9; p<0.0001), 400µM (fold change = 4.9; p<0.0001), and 500µM (fold change = 5.3; p<0.0001) concentrations of CoCl₂ (Figure 6.26).

Figure 6.25: Effect of Cobalt chloride treatment on HIF1-α gene in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
6.3.2.2. Changes in the expression of HER2 and HER2 alternative splice variants after treatment of SKBR3 cells with Cobalt Chloride for 24 and 48 hours

Treatment of HER2-positive SKBR3 cells with hypoxia mimetic CoCl$_2$ resulted in a significant reduction in the expression of HER2 and HER2 splice variants. At 24 hours post-treatment, a significant decrease in expression was observed in the wild-type HER2 (fold change = 6.38; p<0.0001) (Figure 6.27), HER2∆ECD (fold change = 4.39; p<0.001) (Figure 6.28), HER2Δ16 (fold change = 5.14; p<0.001) (Figure 6.29), and HER2ΔATP (fold change = 5.13; p<0.001) (Figure 6.30). At 48 hours post-treatment, the same significant decrease in expression
was observed in the wild-type HER2 (fold change = 6.49; p<0.0001) (Figure 6.31), HER2ΔECD (fold change = 2.76; p<0.0001) (Figure 6.32), HER2Δ16 (fold change = 2.9; p<0.0001) (Figure 6.33), and HER2ΔATP (fold change = 2.9; p<0.0001) (Figure 6.34).

Figure 6.27: Effect of Cobalt Chloride treatment on the wild-type HER2 in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.

Figure 6.28: Effect of Cobalt Chloride treatment on the HER2ΔECD alternative splice variant in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples
consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.

Figure 6.29: Effect of Cobalt Chloride treatment on the \(\text{HER2}\Delta16 \) alternative splice variant in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.

Figure 6.30: Effect of Cobalt Chloride treatment on the \(\text{HER2}\Delta\text{ATP} \) alternative splice variant in SKBR3 cells 24 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.
Figure 6.31: Effect of Cobalt Chloride treatment on the wild-type HER2 in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_{TF} values.

Figure 6.32: Effect of Cobalt Chloride treatment on the HER2ΔECD alternative splice variant in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_{TF} values.
Figure 6.33: Effect of Cobalt Chloride treatment on the HER2Δ16 alternative splice variant in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the CT values.

Figure 6.34: Effect of Cobalt Chloride treatment on the HER2ΔATP alternative splice variant in SKBR3 cells 48 hours after treatment. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the CT values.
6.3.3. The effects of *SRPK1* and *SRSF1* knockdown on the expression of *HER2* and *HER2* alternative splice variants in *HER2*-positive MDA-MB-453 and SKBR3 breast cancer cell lines.

Cells transfected with a non-targeting siRNA were used as a calibrator to measure the fold change at 24 and 48 hours post-treatment, using *RPLI3A* as a normalisation factor (Table 6.7).

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Stability value</th>
<th>Best gene</th>
<th>RPLI3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>0.217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td>0.119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP5B</td>
<td>0.334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2M</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYC1</td>
<td>0.184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1F4A2</td>
<td>0.168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>0.760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPLI3A</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDHA</td>
<td>0.179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP1</td>
<td>0.093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBC</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YWHAZ</td>
<td>0.089</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.7: Normfinder output for the selection of an optimal reference gene in MDA-MB-453 and SKBR3 cells after siRNA knockdown of *SRPK1* and *SRSF1* splice factors.
6.3.3.1 Confirmation of SRPK1 and SRSF1 knockdown in MDA-MB-453 cells

At both 24 and 48 hours post-transfection, a significant knockdown was observed for both SRPK1 and SRSF1 in MDA-MB-453 cells. Using non-targeting siRNA as a calibrator, a 24 hour transfection produced a reduction in SRPK1 mRNA of 1.7fold (± 0.42; p<0.0001) (Figure 6.35), and a reduction in SRSF1 mRNA of 0.76 fold (± 0.63; p<0.01) (Figure 6.37), and a 48 hour transfection produced a reduction in SRPK1 mRNA of 2.0 fold (±0.05; p<0.0001) (Figure 6.36), and in SRSF1 of 1.8 fold (±0.34; p<0.0001) (Figure 6.38).

Figure 6.35: Knockdown of SRPK1 mRNA in MDA-MB-453 cells after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. MDA-MB-453 cells were transfected with 100nM of either a non-targeting siRNA or SRPK1-specific siRNA for 24 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.
Figure 6.36: Knockdown of SRPK1 mRNA in MDA-MB-453 cells after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. MDA-MB-453 cells were transfected with 100nM of either a non-targeting siRNA or SRPK1-specific siRNA for 48 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.

Figure 6.37: Knockdown of SRSF1 mRNA in MDA-MB-453 cells after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. MDA-MB-453 cells were transfected with 100nM of either a non-targeting siRNA or SRSF1-specific siRNA for 24 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
Figure 6.38: Knockdown of SRSF1 mRNA in MDA-MB-453 cells after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. MDA-MB-453 cells were transfected with 100nM of either a non-targeting siRNA or SRSF1-specific siRNA for 48 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.

Figure 6.39: Western blot of SRPK1 and SRSF1 in MDA-MD-453 cells showing, 0, 24 and 48 hours post transfection. MDA-MB-453 cells were transfected with 100nM siGENOME siRNA targeting SRPK1 or SRSF1. Western blot was performed using SRPK1 mouse monoclonal antibody clone EE-13:sc100443 and ASF/SF2 (SRSF1) mouse monoclonal antibody clone 96:sc33652 (Santa Cruz Biotechnology) and β-actin was used as a loading control Protein bands indicate that SRPK1 and SRSF1 expression is lowest 48 hours post-transfection.(representative of n=3).
6.3.3.2. **Knockdown of SRPK1 and SFSF1 shows no significant effect on the expression of HER2 and HER2 alternative splice variants in MDA-MB-453 cells at mRNA level**

In MDA-MB-453 cells, slight changes in the expression of HER2 and HER2 splice variants were observed after SRPK1 and SRSF1 transfection. After 24 hours of transfection with SRPK1, MDA-MB-453 cells showed a slight reduction in the expression of wild-type HER2 (fold change = 1.23; p≥0.05) (Figure 6.40), HER2∆ECD (fold change = 1.28; p≥0.05) (Figure 6.41), HER2Δ16 (fold change = 1.5; p≥0.05) (Figure 6.42), and HER2ΔATP (fold change = 1.59; p≥0.05) (Figure 6.43); and a slight reduction in the expression of wild-type HER2 (fold change = 1.45; p≥0.05) (Figure 6.40) and HER2∆ECD (fold change = 1.54; p≥0.05) (Figure 6.41) after 24 hours of transfection with SRSF1. These changes, however, are not statistically significant. HER2Δ16 and HER2ΔATP remain unchanged after siRNA transfection of SRPK1 and SRSF1 for 24 hours (Figure 6.42 and Figure 6.43). There were also no significant changes in the expression of wild-type HER2, HER2∆ECD, HER2Δ16 and HER2ΔATP after transfection with SRPK1 for 48 hours [fold difference = (1.4; p≥0.05); (1.35; p≥0.05); (1.0; p≥0.05); (1.26; p≥0.05), respectively] (Figures 6.44-6.47), nor in the expression of wild-type HER2, HER2∆ECD, HER2Δ16 and HER2ΔATP after transfection with SRSF1 for 48 hours [fold difference = (1.56; p≥0.05); (1.02; p≥0.05); (1.17; p≥0.05); (0.85; p≥0.05), respectively] (Figures 6.44-6.47).
Figure 6.40: Effect of knockdown on wild-type HER2 mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2 mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.

Figure 6.41: Effect of knockdown on HER2∆ECD mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2∆ECD mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.
Figure 6.42: Effect of knockdown on HER2Δ16 mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2Δ16 mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.

Figure 6.43: Effect of knockdown on HER2ΔATP mRNA in MDA-MB-453 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2ΔATP mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
Figure 6.44: Effect of knockdown on wild-type HER2 mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in wild-type HER2 mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.

Figure 6.45: Effect of knockdown on HER2ΔECD mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2ΔECD mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.
Figure 6.46: Effect of knockdown on HER2Δ16 mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2Δ16 mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the CT values.

Figure 6.47: Effect of knockdown on HER2ΔATP mRNA in MDA-MB-453 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2ΔATP mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the CT values.
6.3.3.3. Confirmation of SRPK1 and SRSF1 knockdown in SKBR3 cells

At both 24 and 48 hours post-transfection, a significant knockdown was observed for both SRPK1 and SRSF1 in SKBR3 cells. Using non-targeting siRNA as a calibrator, a 24 hour transfection produced a reduction in SRPK1 mRNA of 4.1 fold (± 0.08; p<0.0001) (Figure 6.48), and a reduction in SRSF1 mRNA of 4.8 fold (±0.34; p<0.01) (Figure 6.50), and a 48 hour transfection produced a reduction in SRPK1 mRNA of 4.5 fold (p<0.0001) (Figure 6.49), and in SRSF1 of 3.7 fold (±0.56; p<0.0001) (Figure 6.51).

Figure 6.48: Knockdown of SRPK1 mRNA in SKBR3 cell lines after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. SKBR3 cells were transfected with 100nM of either a non-targeting siRNA or SRPK1-specific siRNA for 24 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the Ct values.
Figure 6.49: Knockdown of SRPK1 mRNA in SKBR3 cell lines after transfection with SRPK1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. SKBR3 cells were transfected with 100nM of either a non-targeting siRNA or SRPK1-specific siRNA for 48 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.

Figure 6.50: Knockdown of SRSF1 mRNA in SKBR3 cell lines after transfection with SRSF1 smartpool siGENOME siRNA; a mixture of four separate siRNAs supplied in a single tube. SKBR3 cells were transfected with 100nM of either a non-targeting siRNA or SRSF1-specific siRNA for 24 hours before RNA extraction, reverse transcription and qPCR analysis. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C_T values.
6.3.3.4. Knockdown of SRPK1 and SFSF1 affects the expression of HER2 and HER2 alternative splice variants in SKBR3 cells at mRNA level

Transfection of SRPK1 and SRSF1 siRNAs in SKBR3 cells shows a reduction in the expression of HER2 and HER2 splice variants. After 24 hours of transfection with SRPK1, SKBR3 cells showed a slight reduction in the expression of wild-type HER2 (fold change = 1.02; p≥0.05) (Figure 6.52), HER2∆ECD (fold change = 1.16; p≥0.05) (Figure 6.53), HER2Δ16 (fold change = 1.13; p≥0.05) (Figure 6.54), and HER2ΔATP (fold change = 1.75; p≥0.05) (Figure 6.55). A slight reduction is observed in the expression of wild-type HER2 (fold change = 1.47; p≥0.05) (Figure 6.52), HER2∆ECD (fold change = 1.26; p≥0.05) (Figure 6.53), and HER2ΔATP (fold change = 1.83; p≥0.05) (Figure 6.55) after 24 hour transfection with SRSF1. A more significant change is observed in the reduction of...
expression of \(\text{HER2}\Delta 16 \) after transfection with \(\text{SRSF1} \) for 24 hours (fold change = 1.61; \(p<0.05 \)) (Figure 6.54). Transfection of \(\text{SRPK1} \) and \(\text{SRSF1} \) siRNAs in SKBR3 cells shows a significant reduction in the expression of \(\text{HER2} \) and \(\text{HER2} \) splice variants after 48 hours. Transfection of \(\text{SRPK1} \) in SKBR3 cells showed a reduction in the expression of wild-type \(\text{HER2} \) (fold change = 1.81; \(p<0.05 \)) (Figure 6.56), \(\text{HER2}\Delta 16 \) (fold change = 1.44; \(p<0.05 \)) (Figure 6.58), and \(\text{HER2}\Delta \text{ATP} \) (fold change = 2.67; \(p<0.05 \)) (Figure 6.59). At 48 hours post-transfection, there is no significant change in the expression of \(\text{HER2}\Delta \text{ECD} \) following \(\text{SRPK1} \) knockdown (fold change = 1.42; \(p\geq 0.05 \)) (Figure 6.57). A reduction is observed in the expression of wild-type \(\text{HER2} \) (fold change = 2.02; \(p<0.05 \)) (Figure 6.56), \(\text{HER2}\Delta 16 \) (fold change = 1.9; \(p<0.05 \)) (Figure 6.58), and \(\text{HER2}\Delta \text{ATP} \) (fold change = 3.44; \(p<0.05 \)) (Figure 6.59) after 48 hour transfection with \(\text{SRSF1} \). A less significant change is observed in the reduction of expression of \(\text{HER2}\Delta 16 \) after transfection with \(\text{SRSF1} \) and in the expression of \(\text{HER2}\Delta \text{ECD} \) after transfection for 48 hours with \(\text{SRPK1} \) (fold change = 1.61; \(p\leq 0.05 \)) (Figure 6.57).
Figure 6.52: Effect of knockdown on wild-type HER2 mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in wild-type HER2 mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.

Figure 6.53: Effect of knockdown on HER2\textsubscript{ΔECD} mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2\textsubscript{ΔECD} mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C\textsubscript{T} values.
Figure 6.54: Effect of knockdown on \(\text{HER2}\Delta 16 \) mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to \(\text{SRPK1} \) and \(\text{SRSF1} \) splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in \(\text{HER2}\Delta 16 \) mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the \(C_T \) values.

Figure 6.55: Effect of knockdown on \(\text{HER2}\Delta \text{ATP} \) mRNA in SKBR3 cells 24 hours after transfection with smartpool siGENOME siRNA specific to \(\text{SRPK1} \) and \(\text{SRSF1} \) splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in \(\text{HER2}\Delta \text{ATP} \) mRNA after transfection for 24 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the \(C_T \) values.
Figure 6.56: Effect of knockdown on wild-type HER2 mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in wild-type HER2 mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the CT values.

Figure 6.57: Effect of knockdown on HER2ΔECD mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2ΔECD mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the CT values.
Figure 6.58: Effect of knockdown on HER2Δ16 mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2Δ16 mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C<T values.

Figure 6.59: Effect of knockdown on HER2ΔATP mRNA in SKBR3 cells 48 hours after transfection with smartpool siGENOME siRNA specific to SRPK1 and SRSF1 splice factors. Non-targeting siRNA is used as a calibrator to measure the fold difference in HER2ΔATP mRNA after transfection for 48 hours. Each histogram bar is representative of an average of 9 samples consisting of three technical repeats of three biological replicates. Each biological replicate was run on a different passage of cells. Error bars represent the standard deviations of the C<T values.
6.4. Summary

The study of the regulation of splicing in HER2 has not been well researched to date. With the identification of alternative splice variants of HER2, and the identification of splice factor binding motifs for SRSF1 in chapter 4, the roles of certain potential regulatory factors was investigated. In summary:

- Inhibition of SRPK1 via SRPIN340 increases the expression of HER2 and HER2 alternative splice variants in MDA-MB-453 cells. This regulatory effect is not seen after treatment of SKBR3 and BT-20 cells with SRPIN340.
- Inhibition of CDC2-like kinase and DYRK1A via TG003 and INDY, respectively, does not show any significant effects on the regulation of HER2 and HER2 alternative splice variants MDA-MB-453, SKBR3, and BT-20 cells.
- Induction of HIF1-α by Cobalt Chloride treatment has inhibitory effects on the expression of HER2 and HER2 alternative splice variants in SKBR3 cells.
- Knockdown of SR proteins SRPK1 and SRSF1 in MDA-MB-453 shows an inhibitory effect on the expression of HER2 and HER2 alternative splice variants. This inhibitory effect is not seen after SRPK1 or SRSF1 knockdown in SKBR3 cells.
- The MDA-MB-453 cell line is a good model for the investigation of HER2 and HER2 alternative splice variants in breast cancer.
- SRSF1 and its phosphorylating protein SRPK1 are potential regulators of HER2 and HER2 alternative splicing.
CHAPTER 7. DISCUSSION

Breast cancer is a heterogeneous disease, and with a wide range of histological and molecular subtypes, poses a challenge for diagnosis and prognosis in the clinical settings (Jackson et al., 2013).

The HER2 gene is an important biomarker in predicting the prognosis and outcome of patients with invasive breast cancer. HER2 overexpression or gene amplification as determined by IHC or FISH is indicative of a more aggressive disease phenotype and low survival rates in patients with advanced breast cancer. It is well established that the HER2 status in all breast cancer patients is crucial in identifying high risk groups and for the administration of appropriate therapies (Eroles et al., 2012).

Trastuzumab, a recombinant monoclonal antibody targeted against the HER2 transmembrane receptor binds with high affinity to the extracellular domain of HER2, providing substantial clinical benefits to patients with HER2-overexpressing advanced breast cancer, and improving overall survival when administered as an adjuvant in early breast cancer (Scaltriti et al., 2007). Trastuzumab is currently the most important therapy in HER2-positive breast cancer. Several clinical trials have shown that Trastuzumab improves relapse-free survival and overall survival in patients with HER-2 overexpressing early breast cancer (Castiglioni et al., 2006; Dean-Colomb & Esteva, 2008). However, due to findings that many patients with HER2 positive breast cancer do not respond well to Trastuzumab therapy, recent studies have been aimed at elucidating and overcoming the mechanisms of Trastuzumab resistance. The
mechanisms underlying Trastuzumab resistance are not yet well understood, and elucidating the resistance of HER2-positive breast cancer to Trastuzumab therapy is critical in the diagnosis and treatment of patients whose cancers express this aggressive disease phenotype.

Several efforts have been made to overcome Trastuzumab resistance and to improve overall clinical outcome in targeted breast cancer treatment. These include the use of kinase antibodies such as Pertuzumab (Kolesta et al., 2008). Pertuzumab binds the HER2 extracellular domain in an area other than Trastuzumab, and interferes with the activation of HER2. An increasing body of evidence indicates that diverse adaptive and genetic changes within the transformed cell give rise to resistant phenotypes of the HER2 protein, which allow them to survive in the presence of HER2-targeting antibodies (Freudenberg et al., 2009). Khoury et al., (2011) established that mutations in the juxtamembrane domain (Trastuzumab binding site) of HER2 is a rare event, and would therefore not account for the relatively high frequency of Trastuzumab resistance encountered clinically (Khoury et al., 2011).

This thesis establishes an overview of HER2 expression in HER2-positive breast and ovarian cancer cell lines by immunohistochemistry. The results obtained correlate well with previous HER2 studies on the cell lines used in this study (Wolff et al., 2007). However, overall protein expression as determined by IHC may not be conclusive in determining a patient’s true HER2 status, and may therefore not be adequate as a single method of testing, to predict patients’ response to Trastuzumab treatment. The antigen-antibody interaction of Trastuzumab and HER2 is mediated by a portion of the
HER2 subdomain IV which consists of amino acid residues 510 – 643. The Trastuzumab antigen has affinity to amino acids 557 – 603. The coding regions of these amino acid residues are present in exons 17-18. The resistance of HER2 breast cancer to Trastuzumab might be an indication that Trastuzumab binds differentially to different HER2 splice isoforms. To be efficacious, the antibody must be able to bind to the HER2 receptor, and consequently exact its growth inhibitory properties. This binding to the HER2 receptor is entirely dependent on non-covalent interactions, therefore small changes in the antigen structure such as the loss of a single hydrogen bond can significantly reduce the strength of the antigen antibody interaction by over a 1000-fold (Khoury et al., 2011).

This study hypothesized that factors other than the total copy number of HER2 may be responsible for disease progression in HER2-overexpressing invasive breast cancers, and that currently unidentified alternative splice variants of HER2 may give rise to protein isoforms with potent cellular functions, which can potentially alter the binding efficiency of Trastuzumab to the HER2 receptor.

Bioinformatic analysis of the reference HER2 gene revealed four binding sites on the cell surface receptor of the HER2 protein which consists of two ligand binding sites, a signal transduction site, and a growth factor receptor domain; and an active binding site in the transmembrane domain which is responsible for tyrosine kinase phosphorylation, acting as an ‘on’ or ‘off’ switch in a variety of cellular functions.
This thesis demonstrates for the first time, the expression of two novel HER2 alternative splice variants, HER2∆ATP and HER2∆ECD, which, due to their very distinct structural and functional differences from the wild-type HER2, have the potential to alter the binding affinity of Trastuzumab to the HER2 receptor, thereby contributing to the cellular changes that might affect patient response to Trastuzumab therapy.

Analysis of the sequences obtained from the smaller band produced by primer pair E15F/E19R revealed a loss of 42 base pairs downstream of the HER2 mRNA sequence, indicative of an alternative 5’ splice site in exon 18. This alternative 5’ splice site resulted in the novel HER2 isoform HER2∆ATP. The presence of a vertebrate splice site consensus sequence at the new splice boundaries suggest that this is not a splicing event mediated as a result of a mutation, but a true isoform resulting in an in-frame loss of 14 amino acids from the HER2 protein.

Analysis of the resulting predicted protein revealed the deletions of this new HER2 splice variant to be the loss of amino acids 724 – 737 in the tyrosine kinase domain of the HER2 protein. The direct consequence of the loss of amino acids 724 – 737 is the loss of the entire ATP binding pocket of the HER2 protein, which is represented by amino acids 726 – 734.

In the HER2∆ATP isoform, the predicted HER2 extracellular domain remains unchanged. Since HER2 dimerization occurs on subdomain II of the HER2 extracellular domain, HER2∆ATP would still be capable of dimerization; however, the loss of amino acids in the tyrosine kinase region may inhibit phosphorylation and subsequent
activation of downstream signalling pathways. The activation of the ligand-binding domain of the HER2 receptor triggers conformational changes within the HER2 cytoplasmic domain, and the resulting phosphorylation of ATP to tyrosine residues on target substrates can only occur when the crucial key loops within the kinase domain are appropriately positioned (Telesco & Radhakrishnan, 2009). These functional loops form the molecular regulatory mechanisms in HER2 phosphorylation; amino acid residues 884 – 850 form the catalytic loop (C-loop), which is crucial in the transfer of phosphoryl groups. Amino acid residues 761-775 and 727 – 732 form the αC helix and the nucleotide binding loop (N-loop), respectively, and these two loops are responsible for the coordination of the ATP substrate tyrosine. Amino acid residues 863 – 884 form the activation loop (A loop), which coordinates the activation of the tyrosine kinase by regulating accessibility of the target substrate to the C-loop. It is predicted that the HER2ΔATP splice variant translates a protein which is incapable of phosphorylation, as a portion of the nucleotide binding loop is lost in translation.

Analysis of the sequences obtained from the smaller band produced by primer pairs E12F/E15R revealed a loss of 133 nucleotides corresponding to the loss of the entire exon 13. Bioinformatic analysis of this novel alternative splice variant revealed a cassette exon in exon 13. Further analysis using exPASY translate tool revealed a truncated 645 amino acid protein which lacks amino acids 1-610 of the wild-type HER2 isoform, but has conserved active binding sites in the transmembrane domain of the HER2 protein.
Previous studies have demonstrated a HER2 receptor termed p95HER2 similar in structure to the HER2ΔECD alternative splice variant. P95HER2 is an amino-terminally truncated carboxyl-terminal fragment (CTF) of HER2 with kinase activity that lacks the Trastuzumab binding site, which is frequently found in HER2 overexpressing breast cancer cell lines and tumours (Scaltriti et al., 2007; Sperinde et al., 2010; Sasso et al., 2011). The p95HER2 isoform is often cited as a contributing cause of Trastuzumab resistance. Studies have demonstrated that p95HER2-expressing tumours may be sensitive to the effects of Lapatinib, a small-molecule tyrosine kinase inhibitor which inhibits HER2 phosphorylation by binding to the intracellular kinase domain of HER2 (Awada, Bozovic-Spasojevic & Chow, 2012). The generation of p95HER2 has been speculated to be by several mechanisms; the proteolytic shedding of the HER2 extracellular domain at a site proximal to the transmembrane domain; alternative initiation of translation at the mRNA encoding HER2 from methionine 611 located before the transmembrane domain, or alternative initiation of translation at the mRNA encoding HER2 from methionine 687 located after the transmembrane domain (Scaltriti et al., 2007; Sasso et al., 2011). Interestingly, an mRNA precursor of the p95HER2 has not been discovered to date.

This thesis predicts for the first time, a novel alternative splice variant of HER2, the HER2ΔECD splice variant, potentially corresponding to p95HER2 protein.

In a previous study, Sperinde et al., (2010) demonstrated a novel antibody that measures p95HER2 in vitro. Due to the HER2ΔECD splice variant not being previously discovered, a method of detecting p95HER2 in HER2 mRNA has not been previously
demonstrated. In this thesis, for the first time, a method of detecting $HER2\Delta ECD$ in genetic material has been demonstrated using RT-PCR priming, as well as a double-dye probe (Taqman) assay to detect the relative expression of $HER2\Delta ECD$, a predicted precursor of $p95HER2$.

Due to the significant findings leading to the discovery of novel $HER2$ splice variants in this study, the expression of $HER2$ and $HER2$ alternative splice variants was investigated in a small cohort of human samples, to determine whether the splice variants identified are only tumour-specific. It has been shown here that despite the challenges of reversal of cross-linking in FFPE tissue samples, RNA can be successfully obtained from FFPE samples and for RT-PCR amplification of $HER2$ and $HER2$ splice variants. RNA from FFPE sample is known to be highly degraded, and results in RNA fragments approximately 200 nucleotides in length (Abramovitz et al., 2008). It is reported here that $HER2$ fragments with amplicon sizes of ~400 nucleotides in length and above were detected in the FFPE samples. Of the fourteen samples in the FFPE cohort, $HER2\Delta ECD$ was detected in three samples, $HER2\Delta ATP$ was detected in one sample, and $HER2\Delta 16$ was detected in six samples. Although the expression of $HER2\Delta 16$ has been previously identified in human samples (Castiglioni et al., 2006), it is reported here for the first time in human tissue samples preserved by formalin fixation. $p95HER2$, which is predicted in this study to be the protein encoded by the novel $HER2$ splice variant $HER2\Delta ECD$, has been previously identified in human samples as a protein. This $HER2$ isoform is being identified in human tissue mRNA. In addition, the $HER2\Delta ATP$ splice variant which corresponds with the loss of the ATP binding site of the $HER2$ protein has also been detected here in FFPE samples.
The regulation of HER2 and HER2 splice variants was also investigated in cell line models. The role of splice factor kinases was investigated by the use of protein kinase inhibitors SRPIN340, TG003 and INDY in HER2 3+ SKBR3, HER2 2+ MDA-MB-453, and HER2- BT-20 cell lines. Of all three cell lines, only MDA-MB-453 showed any changes in the expression of HER2 and HER2 alternative splice variants. The inhibition of SRPK1 by the use of splice factor kinase SRPIN340 greatly increased the expression of HER2 and HER2 alternative splice variants. Bioinformatic analysis of splice factor motifs in chapter 4 revealed potential binding sites for the SR kinase SRSF1 (ASF/SF2), a splice factor potent regulated by the protein kinase SRPK1. SRPIN340 is a selective inhibitor of SRPK1, and following SRPIN340 treatment of MDA-MB-453 cells, levels of HER2 were significantly elevated in the cells. Interestingly, direct siRNA knockdown of SRPK1 and SRSF1 and SRSF1 were shown to have inhibitory effects on HER2 and HER2 alternative splice variants in MDA-MB-453 cells. Little is known about the regulation of HER2 expression, nor the splice factors directly involved in HER2 splicing. The up regulation of HER2 following SRPK1 inhibition via SRPIN340, and the down regulation of HER2 following direct knockdown of SRPK1 and SRSF1 in MDA-MB-453 cells present a novel prediction that SRPK1 and SRSF1 may be potent regulators of HER2 splicing.

Hypoxia Inducible Factor (HIF1-α), a potent physiologic marker for hypoxia in the cells, has been known to act as a tumour suppressor in certain cancers (Chiavarina et al., 2010). The induction of HIF1-α in SKBR3 cells showed significantly reduced levels of HER2 and HER2 splice variants after as short as 24 hours following treatment with hypoxia mimetic factor CoCl₂. This finding confirms that HIF1-α may play also a crucial
role in driving down cancer cells, and reports for the first time that HIF1-α may be a positive factor in the regulation of HER2 expression and splicing.

There are areas in this research which may benefit from further investigation. For example, there is not much information available on the exact protein sequences that HER2 antibodies bind to. With findings of new alternative splice variants which are potentially capable of altering the conformation of the HER2 protein with serious clinical implications, targeted treatment should focus on detecting more than one HER2 protein, as a combination of different HER2 isoforms may contribute in giving patients a HER2 profile, thereby making it easier to determine what treatment will be beneficial to individual patients. For example, retrospective research has found that p95HER2 is expressed in a large number of HER2 positive breast cancers, and co-expression of p95HER2 with the wild-type HER2 has been found to give rise to Trastuzumab resistant HER2 tumours. These studies were carried out in retrospect, and therefore did not directly benefit the patients at the time of diagnosis. Findings of this type would inform the use of other therapies like Lapatinib in combination with Trastuzumab in clinical trials, with the aim of potentially inhibiting HER2 at the extracellular level at the same time as the intracellular.

The discovery of HER2 splice variants in breast tissues in this study leads to the recommendation that a larger cohort be tested, to give more significant information on the expression of HER2 alternative splice variants in women who suffer from the disease.
It is also suggested that further work be carried out on the regulation of expression of HER2 alternative splice variants, particularly the expression of HER2 splice variants in non-HER2 positive cell line models, to further the investigations into the role of these splice factors in breast cancer, and the role of SR proteins and splice factor kinases in the regulation of splicing in HER2. The wild-type HER2 is often coexpressed with the known HER2 splice variants, it may be beneficial to isolate the wild-type HER2 in cell line models, and to investigate whether resistance to Trastuzumab may due to de novo resistance of HER2, or due to the coexpression of HER2 splice variants which may have intrinsic resistance to Trastuzumab.

In conclusion this thesis demonstrates for the first time two novel alternative splice variants of HER2, and also has predicted potential regulators of splicing in HER2 and HER2 alternative splice variants, including the HER2Δ16 variant. The detection of these splice variants in human samples indicates a potential clinical significance, which can be established through further research and replication of these findings. The wild-type HER2 and the HER2 alternative splice variants appear to show similar changes in expression levels following treatments that have been administered to investigate their effects in cell line models. It might therefore be beneficial, for example, to look into the expression of HER2ΔATP in vivo. HER2ΔATP, being a potentially less active HER2 isoform, may intrinsically inhibit phosphorylation with a higher potency than antibodies being administered. The findings of this study put alternative splicing of HER2 at a focal point, in a hypothesis that the effects of alternative splicing in invasive breast cancer may be the continuing cause of resistance to existing therapies and
consequently disease progression in patients with HER2 overexpressing or gene amplified invasive breast cancer.
REFERENCES

217

Scaltriti, M., Eichhorn, P.J., Cortés, J., Prudkin, L., Aura, C., Jiménez, J., Chandarlapaty, S., Serra, V., Prat, A., Ibrahim, Y.H., Guzmán, M., Gili, M., Rodríguez, O., Rodríguez,

APPENDICES

APPENDIX A:

HER2 sequence (Accession Number NM_004448)

EXON 1 (238bp)
GGGACCGGAGAACCAGGGGAGCCCCCGGCAGCGCCGCACCCCTTCACCCACCGGCGCCCTTT
ACTGCAGCCCGCGCCCGCCCCCACCCTGTGGACACCCCGCCCGCCCCGCCTCCCCAGCAGG
GTCCACGCAGCCAGCGGGCGAGGCCAGCTGAGCTGAGCGGCGGCCTGTGC

EXON 2 (152bp)
TGTGCACCGGCCAGACATGAGCTGCAGCTCCCTGCCAGTCAGCTGGAGTGCAGGCAGGAGGCT

EXON 3 (214bp)

EXON 4 (135bp)

EXON 5 (69bp)

EXON 6 (116bp)

EXON 7 (142bp)

EXON 8 (120bp)

EXON 9 (127bp)

EXON 10 (74bp)

EXON 11 (91bp)

223
EXON 12 (200bp)
TGGCGCCTACTCTGCTGACCCCTGCAAGGGCTTGCTGGGCTGCTGCCTACTGA
GGGAACTGGGCAACTTGACCCCTCAATCACCCTAACCCACCTGCTGCTGCCAGGGGCA
TGCCCCTGGGACCAGCTCCTTGGGAACCCGCACCAAGGCTTGCTGCCACTGCCCATCGG
AGGACGAGTGTG

EXON 13 (133bp)
TGGGCGAGGGCTGCGCTGCCACCAGCTGTGGCCCGAGGGCACTGCTGGGGTCCAGGGCC
CACCCAGTGTGTCAACTGCAACAGGCTCTTTCGGAACCCGCACCAAGCTCTGCTCCAC
ACTGCCAACCGGCCAGAGGACGAGTGTG

EXON 14 (91bp)
GCTCCCAGGGAGATAGTGAATGCCAGCAGCCAGCTGTGCTTTTGGCCGTGCCACCTGAGT
GAATGGCTCACTGACCTTTTGGACCG

EXON 15 (161bp)
GAGGCTGACGAGGTGTGCTGGCCCTGCTGCCACCAGCTGTGGCCCGAGGGCACTGCT
GGGGTCCAGGGCCACCCAGTGTGTCAACTGCAGCCAGTTCCTTCGGAACCCGCACCA
AGCTCTGCTCCACACTGCCAACCGGCCAGAGGACGAGTGTG

EXON 16 (48bp)
CTGTGCGGCCCTAGTGACACCTAGCCGAGGCTGCAATCACCCTAAGGGCTGCTCCAC
ACTGCCAACCGGCCAGAGGACGAGTGTG

EXON 17 (139bp)
CCCTCTGACGCTCATCTCTGCTGCTGGGTGGCCATTCTCGTCTGCTGGCTCTGGGTTGG
CTGCTGGGCTGACCAGCTTGACCTTTTGGCAACAGATGCGGAGACTGC

EXON 18 (99bp)
GGAGGACGAGCTGAGGAAGGTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACA
AG

EXON 20 (186bp)
GAAGGATACTAGTGATGGCTGGGCTGCTGCCCATATGTTCTGGGCTGCTGCCAGGT
ACATCCACGGTGAGTCTGGGAGACAGATCTTTGGCAACAGATGCGGAGACTGC

EXON 21 (156bp)
GGAGGATAGCTAGTGATGGCTGGGCTGCTGCCCATATGTTCTGGGCTGCTGCCAGGT
ACATCCACGGTGAGTCTGGGAGACAGATCTTTGGCAACAGATGCGGAGACTGC

EXON 22 (76bp)
GTTGGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT

EXON 23 (147bp)
GTTGGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT

EXON 24 (98bp)
GTTGGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT

224
EXON 25 (189bp)
AATGAGGACCTTGGGCCAGCCAGTTCCTTGGACACGACCTTCTACCGCCTACATGCTGAGGACCTG
GATGACATGGGGGACCTGGTGGATGCTGAGGAGTATCTGGTACCCCAGCAGGGCTTCTTCTG
TCCAGACCCTTGCCCAGGGCTGGGCCATGGTCACCACAGCCACCGCAGCTCATCTACCA
GG

EXON 26 (253bp)
AGTGCGCCTTCGGAGACCTGACACTAGG
GCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTC
CACTGGCACCCTCCGAAGGGGCTGCGATGTTTTGATGTGGACTGGAATGGGGGCA
GCCAAGGGGCTGCAAAGCTCCCACACATGACCCCAAGCCTCTACAGGGGTACAGTGAGGA
CCCACAGTACCCCTGCCCCTCGAGACTGATGGCTACCTTGCCCCCCTGACCTGCAGCCCTG
CCC

EXON 27 (969bp)
AATATGTGAACCAGCCAGATGATTCGGCCGGCCAGCCACCCCTCTGCCGGGAGAGGGCCCTCTG
CTGCCGACCTGGTGTGGCCACTCTGGAAGGCAGGCAAGACTCTCCCAGAGGACAGGACCC
AGTACCTGGTGACGCGCCAGGGCCCCGAGATGACCCAGCCCTCTACAGCGGTACAGTGAGGA
CCCCACAGTACCCCTGCCCCTCGAGACTGATGGCTACCTTGCCCCCCTGACCTGCAGCCCTG
CCC

AATATGTGAACCAGCCAGATGATTCGGCCGGCCAGCCACCCCTCTGCCGGGAGAGGGCCCTCTG
CTGCCGACCTGGTGTGGCCACTCTGGAAGGCAGGCAAGACTCTCCCAGAGGACAGGACCC
AGTACCTGGTGACGCGCCAGGGCCCCGAGATGACCCAGCCCTCTACAGCGGTACAGTGAGGA
CCCCACAGTACCCCTGCCCCTCGAGACTGATGGCTACCTTGCCCCCCTGACCTGCAGCCCTG
CCC
Sequences of HER2 cDNA obtained from RT-PCR assays which showed additional bands and subsequent differences in cDNA sequence

Figure A 1: Sequence analysis of the top band amplified using primers E12F + E 15R, showing exon 12, exon 13, and exon 15. In Italics – forward and reverse primers. Underlined – actual cDNA sequence obtained from excised band.

Figure A 2: Sequence analysis of the middle band amplified using primers E12F + E 15R, showing exon 12, exon 13, exon 14, and exon 15. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.
5’…GAGGCTGACAGTGTTGGCCTGTGCCACTATAAGGACCCCTCTCTTCTGCTGGCCCGCCTGCCCCagcgttgaaaccctgaccccTCCTCATTACAGCCCTACTGGAAGTTTCCAGATGAGGAGGCTGCCGTGGCTGCCCTGTGCCCACTATAAGGACCCTCCCTTCTGCGTGGCCCGCTGCCCCagcggtgtgaaacctgacctcCTCTACATGCCCATCTGGAAGTTTCCAGATGAGGAGGGCGCATGCCAGCCTTGCCCACATCACTGACCCACCTCTGTGTGTGGACCTGGATGACAAGGGCTGCCCCGCCGAGCAGAGAGCCAGCCCTCTGACGTCCATCATCTCTGCGGTGGTTGGCATTCTGCTGGTCGTGGTCTTGGGGGTGGTCTTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGAAGTACACGATGCGGAGACTGCTGAGGAAAACGGAGCTGGTGGAGCCGCTGACACCTAGCGGAGCGATGCCCAACCAGGCAGTCCGATCCTGAAAAAGAGCGAGCTGAGGAAGGTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCTCTGAGAAGTTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCCTGATGGGGAGAATGTGAAAATTCCAGTGGCCATCAAAGTGTtgagggaaaacacatcccccAAAGCCAACAAAGAAATCTTAGAC…3’

Figure A 3: Sequence showing the top band amplified using primers E15F + E19R, showing exon 15, exon 17, exon 18, and exon 19. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.

5’…GAGGCTGACAGTGTTGGCCTGTGCCACTATAAGGACCCCTCTCTTCTGCTGGCCCGCCTGCCCCagcgttgaaaccctgaccccTCCTCATTACAGCCCTACTGGAAGTTTCCAGATGAGGAGGCTGCCGTGGCTGCCCTGTGCCCACTATAAGGACCCTCCCTTCTGCGTGGCCCGCTGCCCCagcggtgtgaaacctgacctcCTCTACATGCCCATCTGGAAGTTTCCAGATGAGGAGGGCGCATGCCAGCCTTGCCCACATCACTGACCCACCTCTGTGTGTGGACCTGGATGACAAGGGCTGCCCCGCCGAGCAGAGAGCCAGCCCTCTGACGTCCATCATCTCTGCGGTGGTTGGCATTCTGCTGGTCGTGGTCTTGGGGGTGGTCTTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGAAGTACACGATGCGGAGACTGCTGCGAGGAAAACGGAGCTGGTGGAGCCGCTGACACCTAGCGGAGCGATGCCCAACCAGGCAGTCCGATCCTGAAAAAGAGCGAGCTGAGGAAGGTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCTCTGAGAAGTTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCCTGATGGGGAGAATGTGAAAATTCCAGTGGCCATCAAAGTGTtgagggaaaacacatcccccAAAGCCAACAAAGAAATCTTAGAC…3’

Figure A 4: Sequence showing the lower band amplified using primers E15F + E19R, showing exon 15, exon 17, exon 18, and exon 19. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.

5’…GAGGCTGACAGTGTTGGCCTGTGCCACTATAAGGACCCCTCTCTTCTGCTGGCCCGCCTGCCCCagcgttgaaaccctgaccccTCCTCATTACAGCCCTACTGGAAGTTTCCAGATGAGGAGGCTGCCGTGGCTGCCCTGTGCCCACTATAAGGACCCTCCCTTCTGCGTGGCCCGCTGCCCCagcggtgtgaaacctgacctcCTCTACATGCCCATCTGGAAGTTTCCAGATGAGGAGGGCGCATGCCAGCCTTGCCCACATCACTGACCCACCTCTGTGTGTGGACCTGGATGACAAGGGCTGCCCCGCCGAGCAGAGAGCCAGCCCTCTGACGTCCATCATCTCTGCGGTGGTTGGCATTCTGCTGGTCGTGGTCTTGGGGGTGGTCTTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGAAGTACACGATGCGGAGACTGCTGCGAGGAAAACGGAGCTGGTGGAGCCGCTGACACCTAGCGGAGCGATGCCCAACCAGGCAGTCCGATCCTGAAAAAGAGCGAGCTGAGGAAGGTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCTCTGAGAAGTTGAAGGTGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCCTGATGGGGAGAATGTGAAAATTCCAGTGGCCATCAAAGTGTtgagggaaaacacatcccccAAAGCCAACAAAGAAATCTTAGAC…3’

Figure A 5: Sequence showing the top band amplified using primers NP1+NP2, showing exon 15, exon 16, exon 17, and exon 18. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.
Figure A 6: Sequence showing the top band amplified using primers NP1+NP2, showing [exon 15], [exon 16], [exon 17], and [exon 18]. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.

Figure A 7: Sequence showing the top band amplified using primers NPS+NP6, showing [exon 15], [exon 16], and [exon 17]. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.

Figure A 8: Sequence showing the top band amplified using primers NPS+NP6, showing [exon 15], [exon 16], and [exon 17]. In Italics – forward and reverse primers. Underlined – actual gene sequence obtained from excised band.
RT-PCR PRIMER SEQUENCES

<table>
<thead>
<tr>
<th>PRIMER NAME</th>
<th>EXON TARGET</th>
<th>SENSE PRIMER</th>
<th>ANTI-SENSE PRIMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1F1 + E1R</td>
<td>EXON 1</td>
<td>5' CCAGTAGAATGGCGGAGGA '3</td>
<td>5' TTTCTCCGGTCCCAATGGAG '3</td>
</tr>
<tr>
<td>E1F2 + E2R</td>
<td>EXONS 1-2</td>
<td>5' GTGAGAGGAGGAGGGCTGCTT '3</td>
<td>5' GGAGCCCGAGCTTCTCATGTCT '3</td>
</tr>
<tr>
<td>E1F3 + E3R</td>
<td>EXONS 1-3</td>
<td>5' CTTCCCAAGGGGCCTTTAC '3</td>
<td>5' AGCAGTAGCCCTGCACCTC '3</td>
</tr>
<tr>
<td>E3F + E6R</td>
<td>EXONS 3-6</td>
<td>5' TCCAGAGGTGAGGAGGCT '3</td>
<td>5' CAGCAGTCAGTGGGCAATGG '3</td>
</tr>
<tr>
<td>E6F + E9R</td>
<td>EXONS 6-9</td>
<td>5' CACGAGTCAGTGGGAGTGG '3</td>
<td>5' AAATGCCAGGCTCCCCAAAGA '3</td>
</tr>
<tr>
<td>E9F + E12R</td>
<td>EXONS 9-12</td>
<td>5' TGGAGACATTGGCAAGAGGTG '3</td>
<td>5' TTGGCAGTGTTGGAGCAGTC '3</td>
</tr>
<tr>
<td>E12F + E15R</td>
<td>EXONS 12-15</td>
<td>5' GGAACCGACCAAGCCTCT '3</td>
<td>5' TGCAGTTGAGGGGCAAGG '3</td>
</tr>
<tr>
<td>E15F + E19R</td>
<td>EXONS 15-19</td>
<td>5' AGCGGTGTGAAACCTGCAC '3</td>
<td>5' GGGGGATGTTTTCTTCCCA '3</td>
</tr>
<tr>
<td>E19F + E22R</td>
<td>EXONS 19-22</td>
<td>5' GAAAAACATCCCCAAAGCCCAAC '3</td>
<td>5' CCACACATCACTCTTGTTGGGTA '3</td>
</tr>
<tr>
<td>E22F + E25R</td>
<td>EXONS 22-25</td>
<td>5' GATGAGGCTGAGCCGCTCT '3</td>
<td>5' GATGAGGCTGAGTCGCTGCT '3</td>
</tr>
<tr>
<td>E25 + E27R</td>
<td>EXONS 25-27</td>
<td>5' CAGGGACGGCAGCTGACCT '3</td>
<td>5' CTCCCTCTGAGGGCCACAG '3</td>
</tr>
<tr>
<td>E27F + E27R1</td>
<td>EXON 27</td>
<td>5' GAGAACCCCGAGTACCTTGAC '3</td>
<td>5' GCAATGGCACAAATGGGCTAG '3</td>
</tr>
<tr>
<td>NP1 + NP2</td>
<td>EXONS 16-18</td>
<td>5' CATGCCATCTGGGTAATTT '3</td>
<td>5' GCCCACTAGGCTCCGTATTCC '3</td>
</tr>
<tr>
<td>NP5 + NP6</td>
<td>EXONS 16-18</td>
<td>5' ATGCCAGCTTGCCTCCATCA '3</td>
<td>5' ACCACCCCCAAAGACACAGC '3</td>
</tr>
</tbody>
</table>

Table A 1: List of RT-PCR oligonucleotide sequences
RAW VALUES FOR RT-PCR SEQUENCES (INCLUDING SEQUENCES WHICH DID NOT PRODUCE MULTIPLE BANDS, AND FOR WHICH ALTERNATIVE SPLICING WAS NOT OBSERVED)

> 001_T7 -- 12..1051 of sequence

CATGCTCCGGCCGCCTTGCGCGCCGGCGAATTCGATTCCACCCGACAGCATGAAGCTGCGG
CTCCCTGCAAGTCCCAGACCCACTGGCATGCTCCAGCCACCTACCTAGCTCAAGG
GTGAGGCCAACCTGGAACCTACCTACCTGACCCACATAGGCCAGCTTCGGAGAT
ATCCAGAGGGTTCAGGGCTAGTGCACACTGCTCAGCAAACTTACGATGGG
GAGGCTGCGGATTGTCGAGGAGGCCACCATTGGATTGAGGCTGAGATTG
ACAAATGGAGACCCTCCGCAACATACCAATACCAATAGTGGAATTCCGCTCCG
CATATGCAGGCAGCTTACGCTTCAGATGCTTTCTCTGTGTAATTTGTAATGG
CATATACTTCTGAGCTACTTACAAAGGCCGC
TAATACGAGGCACTTACCACTACGAGGAATAACGAGAACACTTACGATGGG
GCAAAACGGCAACGAGCTAAAGGACGGTGCCCTCGGCGCTATAGCTGGC
CTGACGGCTCCAGCCGACAGCCAGGCTAGCAGACTTGGGGTTGCGTAC
AGTAGCGCCAGTGGTGATAGCTGGGGTTGTGCCGCTGGGGGCTCCTC
GGATACCCCAAAATTGCAGCTCAATGGTACGCGAGGAAACCCCGACAG
GATACCTGGCCTGCACTCCTGGCGTTGAGCTCGGACACAGACGAG
GGAGGAGGTGGAGGAGGAGGGCTGCTTGAGGAAGTATAAGAATGAAGTTGTG
ATTcccctcattggaccggagaaaccagggaagccccccccccggcagccgcccccccctc
CACGCCGGCCCTTTACTGCGCAGCCGGCCGCAGCCCGCCCGCCCGCCCGCCCGG
CCCTCCACGGCCCGGGCTACCCAGGCGGAGCAATGGAAAGCAGGCGATGACAG
GCCGGGCTTTGTCGGCGGCGGCGGCGGCTCGGCTCCTCCCTGGCCCCGGCGGACGACCA
AGTGTGACGGGCACAGCAGATGGCAGGCGTCCCGGCGAGCACAAGTAACTGAAGTGCGG
CTCTGGTACTGCGGCGGCAGCCCTCAGCTGGGGTACAGAGGTGGGCGG
CTCCAGACGACAGCTCCCTTGCGGACCTCACAGACTCTAGATGGCGG
TTTGAGGGACACTATGCCCCTGGCCGCTTCGAGAATGGACCGCGCTAACC
GCTACAGGGGGCTCCCCAGGAGGCTCCTGGGAGGCTAGCTGGAGTGG

EXON 1-3
GGAGGAGGTGGAGGAGGAGGGCTGCTTGAGGAAGTATAAGAATGAAGTTGTGAAGCTGCGG
ATTCCTCCATTGGACCAGGAATAACAGGGAAGCCCCCCCCCCGGCGGCGGCGGCCCCCTC
CACGCCGGCCCTTTACTGCGCAGCCGGCCGCAGCCCGCCCGCCCGCCCGCGCCGG;
CCCTCCACGGCCCGGGCTACCCAGGCGGAGCAATGGAAAGCAGGCGATGACAG
GCCGGGCTTTGTCGGCGGCGGCGGCGGCTCGGCTCCTCCCTGGCCCCGGCGGACGACCA
AGTGTGACGGGCACAGCAGATGGCAGGCGTCCCGGCGAGCACAAGTAACTGAAGTGCGG
CTCTGGTACTGCGGCGGCAGCCCTCAGCTGGGGTACAGAGGTGGGCGG
CTCCAGACGACAGCTCCCTTGCGGACCTCACAGACTCTAGATGGCGG
TTTGAGGGACACTATGCCCCTGGCCGCTTCGAGAATGGACCGCGCTAACC
GCTACAGGGGGCTCCCCAGGAGGCTCCTGGGAGGCTAGCTGGAGTGG

> 002_T7 -- 14..1010 of sequence
ATGTCCTCCGGCCCATGCCCAGCCGGCGGAATTCGATTAGGGACAGCGACTCGATGC
GCCGAATGTATACCGCGCTCCCTGGAGGGATTAATGACACATGGCCGCACACAGACGA
CCAGGGCTGGGAGCTGACAGACCAGCTGACAGATTGTGAAGAACCGCGACAGCAG
GTCAGAGTGCTTGGGGGCCCTGGCACTCGACACAGATGGCTGAGTTGAGTTAAGTGGAG
CCAGGGCTGGGAGCTGACAGACCAGCTGACAGATTGTGAAGAACCGCGACAGCAG
EXON 3-7 (REVERSE)

GATATCCAGGAGTGCGAGGCTAGTGCCTAGTCAGTCACACACACAAAGTGAGGCAGGTCCCACT
GCAGAGGCTGCGAGAAGGTGCAGGGCTACGTGCTCATCGCTCACAACCAAGTGAGGCAGGTCCCACT
TAGACAATGGAGACCGCTGAACATACACCATACCTGGTCAACAGGCGCTCCTCCCCAGGAGGCCT
CGGGAGCTGCAGCTGGAGAGGCAGGTCCCACTACACATAGTGGAAGGACATCTTCCACAAGAACA
CCCCAGGCTCTGACAGAAGCAGACCGCGCTAAGGGAAGGACCTTGAGTCAAGAATACGGCGCCAG
CCCTCTACAGTATAGACACCCGCAATCCTGGGCTAGGCTGCTCAGAGAACAGAGGGCGGTTTCCG
GCAGACGTAGTTGCGATAGTACAGGCTGAGTCGTGCTGCAAGGGCACTGCCCACTGACTGCTG
CCGGCTGCACGGGGCCAGGTAGAGGAGTCTGGTCAAGAATACGGCAGGTCCCACT

> 004_T7 -- 12..954 of sequence

CGCATGCTCGGCGCCGCAATGCGGCGCGGGAATTCGATTCCAGGAGGTGCAGGGCTACGTG
CTCATGCTCGGCGGCAATGCGGCGCGGGAATTCGATTCCAGGAGGTGCAGGGCTACGTG
CCAGCTCTTGAGGACAATCTAGCTGGCTGGCTGAGAACATTACGGAACAGCCGCTGAAATAC
CACCCCGTGCAGGCGGCTACGGGCTACGGGCTGAGAACATTACGGAACAGCCGCTGAAATAC
CTGGGCTGCACGCGGCTACGGGCTGAGAACATTACGGAACAGCCGCTGAAATAC
AGATAGTACAGGCTGAGTCGTGCTGCAAGGGCACTGCCCACTGACTGCTG

EXON 3-6

GATATCCAGGAGTGCGAGGCTAGTGCCTAGTCAGTCACACACACAAAGTGAGGCAGGTCCCACT
GCAGAGGCTGCGAGAAGGTGCAGGGCTACGTGCTCATCGCTCACAACCAAGTGAGGCAGGTCCCACT
TAGACAATGGAGACCGCTGAACATACACCATACCTGGTCAACAGGCGCTCCTCCCCAGGAGGCCT
CGGGAGCTGCAGCTGGAGAGGCAGGTCCCACTACACATAGTGGAAGGACATCTTCCACAAGAACA
CCCCAGGCTCTGACAGAAGCAGACCGCGCTAAGGGAAGGACCTTGAGTCAAGAATACGGCGCCAG
CCCTCTACAGTATAGACACCCGCAATCCTGGGCTAGGCTGCTCAGAGAACAGAGGGCGGTTTCCG
GCAGACGTAGTTGCGATAGTACAGGCTGAGTCGTGCTGCAAGGGCACTGCCCACTGACTGCTG
CCGGCTGCACGGGGCCAGGTAGAGGAGTCTGGTCAAGAATACGGCAGGTCCCACT

232
TCTGTGAGCTGACTGCCACGCCCTGGTCACCTAACAACAGACAGTGTGAGCTCATGCCCATGCCCA
ATCCCGAGGGGCGGTATACATTCCAGGCACCAGCTGTGACTGCTGCTGCCTGCTCCT

> 005_T7 -- 14..1056 of sequence
TGCTCCGGCCCGCATGGCGGCCGCGGCCGGAAATCGATTAAAAAGGCGAGAGGGATGAGATCTTCTT
GCAAGGCAAGAACTCTGAGATTTGGCAGTCTAGTCTAGCGTACTTACACTCTGCAATGCTGTG
ACTGGCTTCTGTTGTTTCTGGAAGCCAGAGCTACTCGGAGGGCCATGGGCTGGTATACATTCG
CCAGGTTCACCCACACTACAGCAGCCAGAGCTGCACTGCCCAGCCCTGGTCACCTACAACACACG
ACACGTTTGAGTCCATGCCCAATCCCGAGGGCCGGTATACATTCGGCGCCAGCTGTGACTG
CTGCTGCTCCCT

> 006_T7 -- 15..1032 of sequence
ATGCTCCGGCCCGCATGGCGGCCGCGGCCGGAAATCGATTAAAAAGGCGAGAGGGATGAGATCTTCTT
GCAAGGCAAGAACTCTGAGATTTGGCAGTCTAGTCTAGCGTACTTACACTCTGCAATGCTGTG
ACTGGCTTCTGTTGTTTCTGGAAGCCAGAGCTACTCGGAGGGCCATGGGCTGGTATACATTCG
CCAGGTTCACCCACACTACAGCAGCCAGAGCTGCACTGCCCAGCCCTGGTCACCTACAACACACG
ACACGTTTGAGTCCATGCCCAATCCCGAGGGCCGGTATACATTCGGCGCCAGCTGTGACTG
CTGCTGCTCCCT

EXON 5-8 (REVERSE)

GCCACCCCGTGTTCCTCCGGATGTGTAAGGGCTCCCGCTGCTGGGGAGAGAGTTCTGAGGATTGTC
AGAGCCTGACCGGCACACTCTGCTGTGCGCTGGTTGGCTGCGGTGTGCAAGGGCGACTGCCAC
GACTGTGCTGACATCAGAGTGTGCTGCTGGCTGCACGGGCCCCAAGCACTCTGACTGCCTG
GC

> 006_T7 -- 15..1032 of sequence
ATGCTCCGGCCCGCATGGCGGCCGCGGCCGGAAATCGATTAAAAAGGCGAGAGGGATGAGATCTTCTT
GCAAGGCAAGAACTCTGAGATTTGGCAGTCTAGTCTAGCGTACTTACACTCTGCAATGCTGTG
ACTGGCTTCTGTTGTTTCTGGAAGCCAGAGCTACTCGGAGGGCCATGGGCTGGTATACATTCG
CCAGGTTCACCCACACTACAGCAGCCAGAGCTGCACTGCCCAGCCCTGGTCACCTACAACACACG
ACACGTTTGAGTCCATGCCCAATCCCGAGGGCCGGTATACATTCGGCGCCAGCTGTGACTG
CTGCTGCTCCCT
GGAAACCTGTGAGCTGCATTAGATGATTCGCCACGCGCGGGAGAGGCGGGTTTGCGTATTGGGCGCTCTTC

EXONS 8-10
TGTCATGTGTCCTGCGAGACACTTGCGAGGAGGTCATCTACGCTCTCGCTCACTGACTCTGCTCGGGTCGT
AGCTCGGGTCGTTCGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCACGGGATAACGCACGAAAGAACATGTGAGCAAACGCCAGCAAAGGCCAGGAACCGTAAAAAGGCCCGTGGCTGGCTGGTTTTCCATAGGCTC

> 010_T7 -- 13..946 of sequence
ATGCCTGCAGGGCCCATAGGCGCGCGGGGAATTCGATTGGGGGATGTGTGTTTTCCCTCAACACTTTGAGGCGGCCAATGGCGGCCGCGCAGCTACGCTCTCCTACATAGGATGCCCTGFAGGATGTTCTTGAGATTCTATACATCTCAGCATGGCCGGACAGCCTGCCTGACCTCAGCGTGTTCCAGAACCTGCAAGTAATCCGGGGACGAATTCTGCACAA

> 011b_T7 -- 12..918 of sequence
GCATGCTCCGGCCGCCATAGGCGCGCGGGGAATTCGATTGGGGGATGTGTGTTTTCCCTCAACACTTTGAGGCGGCCAATGGCGGCCGCGCAGCTACGCTCTCCTACATAGGATGCCCTGFAGGATGTTCTTGAGATTCTATACATCTCAGCATGGCCGGACAGCCTGCCTGACCTCAGCGTGTTCCAGAACCTGCAAGTAATCCGGGGACGAATTCTGCACAA

234
CGCTTCCGCTCAGCTGACTGCTGCGCTCGGCTTGCGGCTGGAGCCGCTATCCGCTGAGTACAGCTCA
CTCAGGAGGCCTGTAATACGCTTTCTGCTGAG

> 013_T7 -- 12..1020 of sequence
CATGGCTCCGCGCGGATATCCGAGTTCATCCGAGCCTCGACCTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA>

> 014_T7 -- 13..977 of sequence
CATGGCTCCGCGCGGATATCCGAGTTCATCCGAGCCTCGACCTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA>

> 015_T7 -- 13..1039 of sequence
ATGGCTCCGCGCGGATATCCGAGTTCATCCGAGCCTCGACCTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA>
GGATGCATAGCTTGAGTATTCTATAGTGTCACCTAATAAGCTTTGGCGTAAATCATGTGGTCATAGCTGTTCCTCTGGTGAATTGTGAGTGCCTAATGCGCTCACTGCCCCCTGGGGTGCTCTTCCGCTTCCTCGCTCACTGCCGGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCGCCCTGACGAGCATCAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTTCTAGTGCTGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGACACGAACCCCCCGTTCAGCCGACCGCTGCCTTATCCGGTAACTATCGTCTTGAGTCCAACC

>

021_T7 -- 15..987 of sequence

CATGCTCCGCGCCGCATGGGGGCAGGGGGAATTGCATTACAGACAGCTTGTTTAGGCATCCATGCCAAACGCCGAGGCTGATATGCGATGCTAGATGGCCAGTGGCATATGGTCCAGTGGGTGTTGAGTCGAGTACTCCCTGGCCGCCCTGACGAGCATCAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTTCTAGTGCTGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGACACGAACCCCCCGTTCAGCCGACCGCTGCCTTATCCGGTAACTATCGTCTTGAGTCCAACC

>

021b_T7 -- 14..1028 of sequence

CATGCTCCGCGCCGCATGGGGGCAGGGGGAATTGCATTACAGACAGCTTGTTTAGGCATCCATGCCAAACGCCGAGGCTGATATGCGATGCTAGATGGCCAGTGGCATATGGTCCAGTGGGTGTTGAGTCGAGTACTCCCTGGCCGCCCTGACGAGCATCAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTTCTAGTGCTGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGACACGAACCCCCCGTTCAGCCGACCGCTGCCTTATCCGGTAACTATCGTCTTGAGTCCAACC

238
> 024_T7 -- 14..1069 of sequence
ATGGCTCCGGCCCGGCAAGCACTAGCTGCTACAGCCTATGCCAGGTCGCTATCGGMCTGCGTCTTTCCTCCCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTA

239
TGAAATTCAGTGGCCATCAAAGTGTTGAGGGAAAAACACATCCCCAAAGCCACAAAGAA
ATCTTACGAC

FOLDER NAME: 2010-02-01_ABI55_0266
FILE NAME: 6a_T7_A02_0266.ab1

GGCGGCGCGGGATTCCAGTTCATGCCCCATCCATCGGAAGTTTCCAGATGAGGAGGGGC
GCATGCCCCCATCACTGACCCACTCCCTTCTGACCGTCTCTGCTGCGGTGGTCATT
CTGCTGCGTGGCTCTTGGGATGTGGTGTTCTTCCGCATACGAGACATGTCACTAGCT
TGAGTATTCTATAGTGCACCAACTATAGTGGCAATCGAATCGACAGCTCTTCTGTGGT
GAATTGTATCCCAATTCACACATTACACACCGAGAAAAACCGGAGCAATCGCAACTAG
GATCCGGATGGCATCGTCTGACCTCTGTGCTGCATGTGGAGCAATAGGTGAAGCTC
CTGCTGACGCAGAAGTACACGATGCGGAGACTGCTGCAGGAAACGGAGCTGGTGGAG
CGCATGCCAACCAGGCGCAGATGCGGATCCTGAAAGACGGAGCTGAGGAAGGTGAAGG
TGCTTTGGATCTGGCGCTTTTGGCACAGTCTACAAG

FOLDER NAME: 2010-02-01_ABI55_0266
FILE NAME: 7a_T7_B02_0266.ab1

CAGCTTTGCCCATCAACTGCACCCACACTCCCTTCTGCACCTCATCGTCTCTGGGTGGTG
CCATGCGTGTCCTGGGTCTTTGGAATCTTCTATAGTGGCAATCAGACCAAAAGAACAG
ATCCGGAGATACGAGTCGCGGAGACTGCTGCAGGAAACAGGAGCTGGTGAGCAATACAG
TGCGGGCCGCTGAGCATTTGAGGAGACTCCTACACACACACACAGGTTGATGCACTAGC
TATTTCATAGTGTTCACCTAATTAGCTTGGCCTAACATAGTGCATATGCTGGTCATTCTTG
GTAATTTACGCTCACATTTTCAACAAACATAGGCGCAGAGCAAGAAAGTGAAGCTGGGA
GCTAAATGAGTGACTACATCATTATTAGTGGTCGTCCACTGCAGCCGGCTTTCCAGGCC
AAACTGCTGTGCCCAGTCATTAAATGAAACTCGCAAAAGCCGGGGAGAAGCGCCGTTTGG
TGGGGCCGCTTCTCTGCTGACTCGCGTGTGCGGGCTCCAGAGACAGGACTGGGTGCATC
GGTACAGTCTGGCGCTTTTGGCAGCTACAGTG

EXON 15-18

GAGGCTGACCAGTGTGTTGCGCTGTCGACCCACTATAAGGACCCCTCCTCTTCTGCGTG
GCCGCCCGCCGAGGAGCCAG
CCCTCCTGACGTCCATCATCCTTGCTGCTGTGGACCTGGAAGACGGCTGCTGCTG
GCCCGTTGGGTTGGGTCTTTGGAATCTCATCAAGCGGACGGCAGAAGGCTGGC
GCCCGCGAGCGAGAGCAGACCAGCCCTCCACCTCCATCTCCCTCGGTGATGGTGGT
GCTGGTGCCTTGGGTTGGGTCTTTGGAATCTCATCAAGCGGACGGCAGAAGGCTGGC
GCCCGTTGGGTTGGGTCTTTGGAATCTCATCAAGCGGACGGCAGAAGGCTGGC
AGAACATGTGAGCAGAACAGGCCCCAGACATGAGGAGCAAGCCGCTGTGCTGGAACCGTAAAAAGGCCGCGTTGCTGGC
GTTTTTCCATAGGCTCCGCCCCCTGTGACGAGCATCACAAGAAAATCGACGCCTCAA

EXONS 15-18

GAGGCTGACCACTGTGTTGGCCTGTCGGCCACTATAAGGAGCCCTCTCTCTTGAGCTGCGGCCCCGCTGCAACAAGC
CCCAGGGTGAGAATCTCGCACCCTCTCAGATCCAGGTTGCTAGAGGAGGCGCATGCCAGCCTTGCCCCCATCAACTG
CACCAGGAGACTGCTCGACAGGAG

FOLDER NAME: 2010-01-29_ABI53_0265
FILE NAME: 1_t7_E11_0265.ab1

CATCTGGAAACTCCAGATGGGCGATGTAGGAGGCTGGTTTCACACCGCTGGGGCAGCGGTG

GCTGGCTGGGGCTGCGCTCACTGAGGAACTGGGCAGTGGACTGGCCAGCATCCACCACAAACCCACCTCTGCTTCGTGCACACGG

GAGGAACTCTGCTACCATGCTGAGGCATCTAGTGAATTCGCGGCCGCCTGCAGGTCGACCATAT
GGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTT
GGCGTAATCATGGTCATAGCTTTCTTTCTTGAGTAAATGGTTATCCGCTACAATCCACACAAAC
ATACGAGCGCGAGCATAAAGTGAATTACGCTGGGGTCAATGAG

FOLDER NAME: 2010-01-29_ABI53_0265
FILE NAME: 4_t7_H11_0265.ab1

CATGGCGGCCGCCACCAGGTGTAGCCAGCCAGCTCTTCTCCGAGCAGGACTCTACTG
AAACCTGACACTTCTCTACATGGCCACATCTGGGAAAGTTTCCCCAGATGAGGAGGCGCATGCCAACCTCTG
GCCCCCATCAACTGCAACCCAC

241
CAAGCACCTACCTCTCACCCGATCCCGCATCTGCCGCTTTTCAAGCCACGCTCTCGGCTTCTGCGCTCCGTTAGGTGTCAGCGGCTCCACCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCCCCAAGACCAACGACACCAGAACGAGAATGCAAGAGGACCAGAGCATTCAGGTGAGGATCCGGCTCCCTGCGGCTGCTACACAGCCAGGATCCGGCTCCCTGCGGCTGAGGATCCGGCTCCCTGCGGCTCCCTGCGGCAGCTCCGTTTCCTGCAGCAGTCTCCGCATCGTGTACTCTCTGCTG
FOLDER NAME: 2010-01-29_ABI53_0265
FILE NAME: 7_t7_C12_0265.ab1

CCGCCTTGCCCCCATCAACTGCAACCCACTCCCCCCATCTGACGTCTCATTCTCGCGGTTGGCA
TTCTGCTGTTGCTGTTGTTCTTTGAGGTCTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGA
GTACACGAGGAGAAGGGTACACGATGCGGAGACTGCTGCAGGAAACGGAGCTGGTGGAGCCGCTGACACCTAGCGGA
GCGATGCCCAACCAGGCAGATGCCGATCTCAGAAGAGCGAGGAGCTGAGGAAGGGTGAAG
TGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCTGATGGGGAGAA
GTTGGAAAATTTCCAGTGGCCATCAAAGTGTTAGGGGAAAACACATCCCCCAAGCCAAAG
AAATCTTATAC

EXONS 15-18

GAGGCTGACCAGTGTGTTGCCCCTCTGACGTACCAGTGTGTTGCCCCTCTGACTCTACCAGCAGCAGCCGAGCAGAGAGCCAGCCCTCTGACGTCCATCGTCGCGGTGGTTGGCATTCTGCTGGTCGTGGTCTTGGGGGTGGTCTAATCACTAGTGCGGCCGC
CTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGGTGATCTGGCGCTTTTGGCACAGTCTACAAG

FOLDER NAME: 2010-01-29_ABI53_0265
FILE NAME: 8_t7_D12_0265.ab1

GGACCTGGATGCAACAGGGCTGGCCTGCCGAGCGAGGAGAAGCAGAGCTCCCTCTGACGTCTCATTCTCGCGGTTGGCA
TTCTGCTGTTGCTGTTGTTCTTTGAGGTCTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGA
GTACACGAGGAGAAGGGTACACGATGCGGAGACTGCTGCAGGAAACGGAGCTGGTGGAGCCGCTGACACCTAGCGGA
GCGATGCCCAACCAGGCAGATGCCGATCTCAGAAGAGCGAGGAGCTGAGGAAGGGTGAAG
TGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCTGATGGGGAGAA
GTTGGAAAATTTCCAGTGGCCATCAAAGTGTTAGGGGAAAACACATCCCCCAAGCCAAAG
AAATCTTATAC

GCGATGCCCAACCAGGCAGATGCCGATCTCAGAAGAGCGAGGAGCTGAGGAAGGGTGAAG
TGCTTGGATCTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCTGATGGGGAGAA
GTTGGAAAATTTCCAGTGGCCATCAAAGTGTTAGGGGAAAACACATCCCCCAAGCCAAAG
AAATCTTATAC
TGTCACCTAAATAGCTGTAATCATGCTAGCTTTCCTGCTGTGAAATTGTTATCCGC
TCACAATTCCACACAAACATACGGACGGGAAGCATAAAGTGTGAAAGCCCTGGGTTGCTTAATGA
TGAGACCTAATCATTATTGCGTCCGCCTACTGCCCGCTTTCCAGTGCAGGAAACCTGCTG
GCCAGCTCATTAAATGCTGGGCAACGGCCGGGAGAGGCTGGGTGTTGCACTGAGTACATCCGT
CACTCAAAGGGGCTATTAGCTTACCATACAGGGGATAACCGAGAAGAAACTGTG
AGCAAAGGCGACAGAAGCAGAAAGCGAAGGCGAAGATCAGGCTTTTTCCATA
GGCCTCAGCCCCCTGACGAAGCATCACAAAATTCGACGCTCAAGTCAGAGGTGGCAGAAACCCG
ACAGGACTATAAAAGGATACCGGCGGTTTTCCCA

EXONS 15-18

GAGGCTGACAGTGTTGGGCTGTGGCCACTATAGGACCCCTTCTCCTGCTGGTGGGGGCTGC
CCACAGGCTGTGGATAACCCATGCACTTCTGCTACGTGGTCTTGGGTGTTGCTTTCCAGT
GGCCTCAGCCCCTCTGACGAAGCATCACAAAATTCGACGCTCAAGTCAGAGGTGGCAGAAACCCG
ACAGGACTATAAAAGGATACCGGCGGTTTTCCCA

FOLDER NAME: 2009-12-14_abi54_0258

FILE NAME: 4_C07_0258.ab1

GAAACCTGACCTCCTCTCCTCATTGCCATCGGAAGTCTTTCCGACGATGAGGAGGGGCTAGCAGGC
CCGCCCCATCAGCACCACCTGCTGTGGGCTGTGGGATGACAAGGCTGCCCCGCCGAGCA
GAGGCGACGCTTTACGACGGTCTCTTGCTACGTGGTCTTGGGTGTTGCTTTCCAGT
GGCCTCAGCCCCTCTGACGAAGCATCACAAAATTCGACGCTCAAGTCAGAGGTGGCAGAAACCCG
ACAGGACTATAAAAGGATACCGGCGGTTTTCCCA

EXONS 15-18

GAGGCTGACAGTGTTGGGCTGTGGCCACTATAGGACCCCTTCTCCTGCTGGTGGGGGCTGC
CCACAGGCTGTGGATAACCCATGCACTTCTGCTACGTGGTCTTGGGTGTTGCTTTCCAGT
GGCCTCAGCCCCTCTGACGAAGCATCACAAAATTCGACGCTCAAGTCAGAGGTGGCAGAAACCCG
ACAGGACTATAAAAGGATACCGGCGGTTTTCCCA

244
ATTCTCCCACACGGATCCACACATGCCCATTCTCGCACACTCTCGTCTCTTTAAGGATCCCGCTACTGC
GCCTGTTGCGCCATCCCTCCGTAGTGTACCGAGCGCCGTCCACACGCTCGTTTCTGTGACAGCTG
CTTCCGACGTGTCTCTTCGGATCTTCTGCTGCCGTCGCTTGATGAGGATCCCAAAGACCACCC
CCAGACCGAGGGCATGAGTGGCATGAGTGGCATGAGTGGCATGAGTGGCATGAGTGGCATGAGTGG
CCCAATTCGCCCTATAGTGTGAGTGCTTATTCAATTCAGCTGGCCCTGCTGTTTTTCAACCTCGTGAC
TGGAACACCTTCCCGTTACCAACTTCATCGCT

EXON 15-19

GAGGCTGACACGTGTGTGGCCTGTCGGCCACTATAAGGACCTTCTTCTGCTGTGGCCCGCTG
CCACGGGTGTGAAACCTGACCTGTACATGAGGATCCCAAAGACCCCCAAGACCACGACCAGCAGAATG
CCCAATTCGCCCTATAGTGTGAGTGCTTATTCAATTCAGCTGGCCCTGCTGTTTTTCAACCTCGTGAC
TGGAACACCTTCCCGTTACCAACTTCATCGCT

FOLDER NAME: 2009-12-14_abi5_0258

FILE NAME: 7_F07_0258.ab1

EXON 15-18

GAGGCTGACACGTGTGTGGCCTGTCGGCCACTATAAGGACCTTCTTCTGCTGTGGCCCGCTG
CCACGGGTGTGAAACCTGACCTGTACATGAGGATCCCAAAGACCCCCAAGACCACGACCAGCAGAATG
CCCAATTCGCCCTATAGTGTGAGTGCTTATTCAATTCAGCTGGCCCTGCTGTTTTTCAACCTCGTGAC
TGGAACACCTTCCCGTTACCAACTTCATCGCT
Secondary structure of HER2 protein
Figure A 9: PSIPRED output showing the secondary structure of the HER2 protein aligned with the amino acid sequence. α-helices are represented by pink cylinders, β-strands are represented by yellow arrows, and coils are represented by black lines. The predicted structures are also indicated by lettering; H – alpha helix, E - Beta sheet and C - coils.
pGEM-T Easy Vector Map

The pGEM-T Easy is a high copy number vector for cloning PCR products. It contains both T7 and SP6 RNA polymerase promoters flanking a multiple cloning region within the α-peptide coding region of the enzyme β-galactosidase to enable blue/white screening. It has multiple restriction enzyme sites and an ampicillin resistance gene to facilitate bacterial selection.

Figure A 10: pGEM-T Easy Vector map
APPENDIX B:

CLUSTAL OMEGA ALIGNMENTS OF HER2 mRNA TRANSCRIPT

VARIANTS OBTAINED FROM THE NCBI DATABASE:

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	AAGTTCCTGTGTTTTATCTACTCTCCGCTGAAGTCCACACAGTTAAATTTAAGTTC
NM_001005862	AAGTTCCTGTGTTTTATCTACTCTCCGCTGAAGTCCACACAGTTAAATTTAAGTTC
NM_001289938	AAGTTCCTGTGTTTTATCTACTCTCCGCTGAAGTCCACACAGTTAAATTTAAGTTC

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	CCGGATTTTTGTGGGCGCCTGCCCCGCCCCTCGTCCCCCTGCTGTGTCCATATATCGAGG
NM_001005862	CCGGATTTTTGTGGGCGCCTGCCCCGCCCCTCGTCCCCCTGCTGTGTCCATATATCGAGG
NM_001289938	CCGGATTTTTGTGGGCGCCTGCCCCGCCCCTCGTCCCCCTGCTGTGTCCATATATCGAGG

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	CGATAGGGTTAAGGGAAGGCGGACGCCTGATGGGTTAATGAGCAAACTGAAGTGTTTTCC
NM_001005862	CGATAGGGTTAAGGGAAGGCGGACGCCTGATGGGTTAATGAGCAAACTGAAGTGTTTTCC
NM_001289938	CGATAGGGTTAAGGGAAGGCGGACGCCTGATGGGTTAATGAGCAAACTGAAGTGTTTTCC

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	ATGATCTTTTTTGAGTCGCAATTGAAGTACCACCTCCCGAGGGTGATTGCTTCCCCATGC
NM_001005862	ATGATCTTTTTTGAGTCGCAATTGAAGTACCACCTCCCGAGGGTGATTGCTTCCCCATGC
NM_001289938	ATGATCTTTTTTGAGTCGCAATTGAAGTACCACCTCCCGAGGGTGATTGCTTCCCCATGC

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	GGGGTAGAACCTTTGCTGTCCTGTTCACCACTCTCCAGCACAGAATTTGGCTTATG
NM_001005862	GGGGTAGAACCTTTGCTGTCCTGTTCACCACTCTCCAGCACAGAATTTGGCTTATG
NM_001289938	GGGGTAGAACCTTTGCTGTCCTGTTCACCACTCTCCAGCACAGAATTTGGCTTATG

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	CCTACTCAAT-GTGAAGA----TGATGAGGATGA---AAACC------------
NM_001005862	CCTACTCAAT-GTGAAGA----TGATGAGGATGA---AAACC------------
NM_001289938	CCTACTCAAT-GTGAAGA----TGATGAGGATGA---AAACC------------

NR_110535	-----------------------------
NM_004448	-----------------------------
NM_001289937	-----------------------------
NM_001289936	AAGTTGTGAAGCTGAGATTCCCCTCCATTGGGACCGGAGAAAC-
NM_001005862	AAGTTGTGAAGCTGAGATTCCCCTCCATTGGGACCGGAGAAAC-
NM_001289938	AAGTTGTGAAGCTGAGATTCCCCTCCATTGGGACCGGAGAAAC-

****:*.*:* ** :. **:*.
NM_004448 GGCCAAACCTTACGATGGGATCCCAGCCCGGGAGATCCCTGACCTGCTGGAAAAGGGGGA
NM_001289937 GGCCAAACCTTACGATGGGATCCCAGCCCGGGAGATCCCTGACCTGCTGGAAAAGGGGGA
NM_001289936 GGCCAAACCTTACGATGGGATCCCAGCCCGGGAGATCCCTGACCTGCTGGAAAAGGGGGA
NM_001005862 GGCCAAACCTTACGATGGGATCCCAGCCCGGGAGATCCCTGACCTGCTGGAAAAGGGGGA
NM_001289938

NR_110535 GCGGCTGCCAGGCCCCAGCTTCGACCTCATTGATGTCTACATGATCATGGTCAAATGTTG
NM_004448 GCGGCTGCCAGGCCCCAGCTTCGACCTCATTGATGTCTACATGATCATGG

NM_001289937 GCGGCTGCCAGGCCCCAGCTTCGACCTCATTGATGTCTACATGATCATGGTCAAATGTTG
NM_001289936 GCGGCTGCCAGGCCCCAGCTTCGACCTCATTGATGTCTACATGATCATGGTCAAATGTTG
NM_001005862 GCGGCTGCCAGGCCCCAGCTTCGACCTCATTGATGTCTACATGATCATGGTCAAATGTTG
NM_001289938

--

NR_110535 GATGATTGACTCTGAATGTCGGCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCCCGCAT
NM_004448 GATGATTGACTCTGAATGTCGGCCAAGATTCCGG

NM_001289937 GATGATTGACTCTGAATGTCGGCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCCCGCAT
NM_001289936 GATGATTGACTCTGAATGTCGGCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCCCGCAT
NM_001005862 GATGATTGACTCTGAATGTCGGCCAAGATTCCGG
NM_001289938

--

NR_110535 GGCCAGGGACCCCCAGCGCTTTGTGGTCATCCAGAATGAGGACTTGGGCCCAGCCAGTCC
NM_004448 GGCCAGGGACCCCCAGCGCTTTGTGGTCATCCAGAATGAGG

NM_001289937 GGCCAGGGACCCCCAGCGCTTTGTGGTCATCCAGAATGAGGACTTGGGCCCAGCCAGTCC
NM_001289936 GGCCAGGGACCCCCAGCGCTTTGTGGTCATCCAGAATGAGGACTTGGGCCCAGCCAGTCC
NM_001005862 GGCCAGGGACCCCCAGCGCTTT

NM_001289938

--

NR_110535 CTTGGACAGCACCTTCTACCGCTCACTGCTGGAGGACGATGACATGGGGGACCTGGTGGA
NM_004448 CTTGGACAGCACCTTCTACCGCTCACTGCTGGAGGACG

NM_001289937 CTTGGACAGCACCTTCTACCGCTCACTGCTGGAGGACGATGACATGGGGGACCTGGTGGA
NM_001289936 CTTGGACAGCACCTTCTACCGCTCACTGCTGGAGGACGATGACATGGGGGACCTGGTGGA
NM_001005862

NM_001289938

--

NR_110535 TGCTGAGGAGTATCTGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTGCCCCGGGCGC
NM_004448 TGCTGAGGAGTATCTGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTG

NM_001289937 TGCTGAGGAGTATCTGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTGCCCCGGGCGC
NM_001289936 TGCTGAGGAGTATCTGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTG
NM_001005862 TGCTGAGGAGTATCTGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTGCCCCGGGCGC
NM_001289938

--

NR_110535 TGGGGGCATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGGCGGTGGGGACCT
NM_004448 TGGGGGCATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGGCGGTGGGGACCT

NM_001289937 TGGGGGCATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGG

NM_001289936 TGGGGGCATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGGCGGTGGGGACCT
NM_001005862 TGGGGGCATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGGCGG

NM_001289938

--

NR_110535 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGA
NM_004448 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGG

NM_001289937 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGA
NM_001289936 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGG

NM_001005862 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGA
NM_001289938

--

NR_110535 AGGGGCTGGCTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCA
NM_004448 AGGGGCTGGCTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCA

NM_001289937

--

NM_001289936

NM_001005862 AGGGGCTGGCTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCA
NM_001289938

--

NR_110535 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGA
NM_004448 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGG

NM_001289937 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGA
NM_001289936 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGG

NM_001005862 GACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCAGGTCTCCACTGGCACCCTCCGA
NM_001289938

--

NR_110535 AGGGGCTGGCTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCA
NM_004448 AGGGGCTGGCTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCA

NM_001289937

--

NM_001289936

NM_001005862 AGGGGCTGGCTCCGATGTATTTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCA
NM_001289938

--
NM_001289938

NR_110535 GAGGCAAGTGTTGGGTTCTCTTCACACCCCCACTTTCCATTGCATTTTTTGG
NM_004448 GAGGCAAGTGTTGGGTTCTCTTCACACCCCCACTTTCCATTGCATTTTTTGG
NM_001289937 GAGGCAAGTGTTGGGTTCTCTTCACACCCCCACTTTCCATTGCATTTTTTGG
NM_001289936 GAGGCAAGTGTTGGGTTCTCTTCACACCCCCACTTTCCATTGCATTTTTTGG
NM_001005862 GAGGCAAGTGTTGGGTTCTCTTCACACCCCCACTTTCCATTGCATTTTTTGG
NM_001289938

NR_110535 AAAACAGCTAAAAAAAAAAAAAAAA
NM_004448 AAAACAGCTAAAAAAAAAAAAAAAA
NM_001289937 AAAACAGCTAAAAAAAAAAAAAAAA
NM_001289936 AAAACAGCTAAAAAAAAAAAAAAAA
NM_001005862 AAAACAGCTAAAAAAAAAAAAAAAA
NM_001289938

263
CLUSTAL OMEGA ALIGNMENTS OF HER2 ISOFORMS OBTAINED FROM THE NCBI DATABASE:

<table>
<thead>
<tr>
<th></th>
<th>Sequence</th>
<th></th>
<th>Sequence</th>
<th></th>
<th>Sequence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>MELAALCRNWLLALLPPGAATQVCTGTDKLRLPASPEDTHLDMRLHRLYQGCQVQVQNL</td>
<td>264</td>
<td>ELYLPTNASLQLQDIQEVGYVLYIAHNNQVRQVPLQLRPRGTVETQDFNLQEDNAYLAVLDNG</td>
<td>264</td>
<td>ELTYLPTNASLQLQDIQEVGYVLYIAHNNQVRQVPLQLRPRGTVETQDFNLQEDNAYLAVLDNG</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>---</td>
<td>264</td>
<td>---</td>
<td>264</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>MPGRSWKQVCTGTDKLRLPASPEDTHLDMRLHRLYQGCQVQVQNL</td>
<td>264</td>
<td>MPGRSWKQVCTGTDKLRLPASPEDTHLDMRLHRLYQGCQVQVQNL</td>
<td>264</td>
<td>MPGRSWKQVCTGTDKLRLPASPEDTHLDMRLHRLYQGCQVQVQNL</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>ELTYLPTNASLQLQDIQEVGYVLYIAHNNQVRQVPLQLRPRGTVETQDFNLQEDNAYLAVLDNG</td>
<td>264</td>
<td>ELTYLPTNASLQLQDIQEVGYVLYIAHNNQVRQVPLQLRPRGTVETQDFNLQEDNAYLAVLDNG</td>
<td>264</td>
<td>ELTYLPTNASLQLQDIQEVGYVLYIAHNNQVRQVPLQLRPRGTVETQDFNLQEDNAYLAVLDNG</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>DPLNNTTPVTGASPGGLRELQKSGRCWGESDCQSLTRVCAGGCARCKGEPDPCDCHEQC</td>
<td>264</td>
<td>DPLNNTTPVTGASPGGLRELQKSGRCWGESDCQSLTRVCAGGCARCKGEPDPCDCHEQC</td>
<td>264</td>
<td>DPLNNTTPVTGASPGGLRELQKSGRCWGESDCQSLTRVCAGGCARCKGEPDPCDCHEQC</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>LTLIDTNRSRACHFCSMKGSRCWGESEDQSLTRVCAGGCARCKGEPDPCDCHEQC</td>
<td>264</td>
<td>LTLIDTNRSRACHFCSMKGSRCWGESEDQSLTRVCAGGCARCKGEPDPCDCHEQC</td>
<td>264</td>
<td>LTLIDTNRSRACHFCSMKGSRCWGESEDQSLTRVCAGGCARCKGEPDPCDCHEQC</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>AAGCTGPKHSDCLACVGSLHICELHCAPVTYNDDTFESMNPNECYRTFGASCVTACP</td>
<td>264</td>
<td>AAGCTGPKHSDCLACVGSLHICELHCAPVTYNDDTFESMNPNECYRTFGASCVTACP</td>
<td>264</td>
<td>AAGCTGPKHSDCLACVGSLHICELHCAPVTYNDDTFESMNPNECYRTFGASCVTACP</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>YNYLSTDVGSCCLVLCPNQEVTADQGKRQCEKCSKPCARCVCYGLGMEHLREVAVTSA</td>
<td>264</td>
<td>YNYLSTDVGSCCLVLCPNQEVTADQGKRQCEKCSKPCARCVCYGLGMEHLREVAVTSA</td>
<td>264</td>
<td>YNYLSTDVGSCCLVLCPNQEVTADQGKRQCEKCSKPCARCVCYGLGMEHLREVAVTSA</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>IQEFAGCKKIFGSLAPFDSGDPSNTAPLPQPEQLQVFETLQEEITGGLYISAWPSLPP</td>
<td>264</td>
<td>IQEFAGCKKIFGSLAPFDSGDPSNTAPLPQPEQLQVFETLQEEITGGLYISAWPSLPP</td>
<td>264</td>
<td>IQEFAGCKKIFGSLAPFDSGDPSNTAPLPQPEQLQVFETLQEEITGGLYISAWPSLPP</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>VEECRVLQQLPRESYVARNHCLPCHPECQPQNQSGVTCFFGPEADQCVAHAYKDDPFCVARC</td>
<td>264</td>
<td>VEECRVLQQLPRESYVARNHCLPCHPECQPQNQSGVTCFFGPEADQCVAHAYKDDPFCVARC</td>
<td>264</td>
<td>VEECRVLQQLPRESYVARNHCLPCHPECQPQNQSGVTCFFGPEADQCVAHAYKDDPFCVARC</td>
<td></td>
</tr>
</tbody>
</table>
P04626-4 QNLQVIRGRILHNGAYSLLQLGLGISWLGLRSLRELGSGLALIHHTHLCVFHTVDPQDL

P04626-1
P04626-2
P04626-3
P04626-4 FRNFHQALLUTANKFPEDECVGEGLACHQICARGHGWGFPTQCVNCSQFLRGQECVVECR

P04626-1
P04626-2
P04626-3
P04626-4 VLQLPVEYVSNARHCLPCQECQDFQNGSVTCFGEADQCVCAHYKDPFCVARCPSGVK

P04626-1
P04626-2
P04626-3
P04626-4 PDLQYPINQFPLEGACQPCPINTHSCVDDKGCAPAERSPLTSIASAVGILLVV

P04626-1
P04626-2
P04626-3
P04626-4 VLVVFGLIIRKRQQKIRKTYMRRLLQETEVLTEPVAPSAMPNQAMRILKETELRKVK

P04626-1
P04626-2
P04626-3
P04626-4 LGSAFVTYKiPVDGENVKPVAIKVLRENTPANEILDEAYVMAGVSPYVSRL

P04626-1
P04626-2
P04626-3
P04626-4 LGICLTSTVQLTQLMPYGDHRENRGLGSQDLLNWCQIAKGMSYLEDVRLVHRD

P04626-1
P04626-2
P04626-3
P04626-4 LAAARNVLKSPNHKIDTFGLARLLDDIDETEYHADGGKVPKWMAXESILRRRFTHQSDV

P04626-1
P04626-2
P04626-3
P04626-4 WSYGVTWELMFTFGAKPYDGIPAREIPDLLEKGERLQPQPITIDVYMIMVKCMIDSEC

P04626-1
P04626-2
P04626-3
P04626-4 RPRFRELVESFRMARDPQRFVVIQMEDLGPSFLDSTFIYSSLLEDDMGDLVDAEYLV

P04626-1
P04626-2
P04626-3
P04626-4 PQQGFCDPAPGAGVMVHRHRSSTRSGGDLLTGLPSEEAPRSPALSEGASDV

P04626-1
P04626-2
P04626-3
P04626-4 FDGDLMGAAKGLQLSLPHTDPSIQRYSEDPTVLPSETGYYVATLPQTLSQFQPEYVNQPDV
P04626
P04626-1
P04626-3
P04626-4

RPQPPSPREGPLPAARPAGATLERPKTLSPGKNGVVKDVFAMGAENPEYLTPQGAAP

P04626
P04626-1
P04626-3
P04626-4
QPHPPPAFSPAFDNLYWDQDERGAPPSTFKEPTAENPEYLGLDVVPV
LIST OF PRESENTATIONS

1.

EVENT TITLE: SAN ANTONIO BREAST CANCER SYMPOSIUM

VENUE: HENRY B. GONZALEZ CONVENTION CENTER, SAN ANTONIO, TEXAS, USA

DATE: DECEMBER 6-11, 2011

AWARD RECEIVED: AACR scholar-in-training award by Susan G Komen for the Cure.

ABSTRACT

Background:
The Human Epidermal Growth Factor Receptor 2 (HER2) is an oncogene expressed in 25-30% of invasive breast cancers. HER2 shares extensive homology with other members of the HER family (HER1, HER3 and HER4), and is constitutively active as an homo-and heterodimer. The HER2 gene encodes an 185kDa transmembrane protein with tyrosine kinase activity. Gene amplification or protein expression of HER2 is a predictor of poor clinical outcome and decreased survival in women with breast cancer, and also indicates a favourable response to Trastuzumab (Herceptin) therapy, or a combinational therapy comprising Herceptin plus chemotherapy. However, resistance to Trastuzumab remains the case in approximately 50% of HER2 amplified/overexpressing tumours. Understanding the molecular mechanisms of Trastuzumab resistance and identifying more effective therapies, is critical in the treatment of patients whose breast cancers express this aggressive disease phenotype. In this study, it is postulated that the abnormal generation of mRNA splice variants may be responsible for the continued tumour growth and progression.

Aims:
The aim of this study is to increase our understanding of the role of HER2 splice variants in the development and progression of breast cancer. This will inform the development of more sophisticated and effective therapies that target specific HER2 isoforms, rather than Herceptin, which targets just the generic wild type HER2 protein.

Materials and Methods:
The coding region of HER2 cDNA was PCR-amplified using 12 sets of HER2 specific primers in HER2 positive cell lines (SKOV-3, SKBR-3, MDA-MB-453 and MDA-MB-361).

Results:
RT-PCR results showed multiple bands in various regions of the HER2 mRNA. Sequencing of these bands revealed novel alternative splice variants with deletions in exons 13 and 18 of the HER2 gene expressed in addition to the wild-type HER2. Bioinformatics analysis of the deletions revealed a cassette exon in exon 13, and a loss of 42 base pairs in the 3’ end of exon 18 compared to the full length HER2. Both the full-length HER2 sequence and the sequence containing the deletions were translated using the ExPASy Translate tool. This revealed an in-frame deletion of 14 amino acids and a novel splice isoform with a deletion in the HER2 protein, which encompasses the entire ATP binding pocket. This was determined by analysis using UniProtKB to identify the composition of amino acids for each domain of HER2.

Discussion:
Our studies have identified novel splice variants in the tyrosine kinas domain of the HER2 gene in HER2-positive cell lines. The loss of an ATP binding site in the HER2 gene may lead to a less active HER2 isoform, which may play a significant role in prognosis. Current work is being carried out to study the regulation of these splice variants and to study the role of splice factor ASF/SF2 and its phosphorylating kinase SRPK1 in the regulation of HER2 splicing, and to elucidate any significant changes in the HER2 signalling pathways. In addition, the expression of these isoforms is currently being investigated in tissues from FFPE and frozen breast tumours.

2.

EVENT TITLE: POSTGRADUATE RESEARCH FORUM

VENUE: UNIVERSITY OF THE WEST OF ENGLAND

DATE: APRIL 12, 2011

TITLE: THE FUNCTION AND ROLE OF ALTERNATIVE SPLICE VARIANTS IN INVASIVE BREAST CANCER

ABSTRACT
Background:
The Human Epidermal Growth Factor Receptor 2 (HER2) is an oncogene expressed in 25-30% of invasive breast cancers. HER2 shares extensive homology with other members of the HER family (HER1, HER3 and HER4), and is constitutively active as an homo-and heterodimer. The HER2 gene encodes an 185kDa transmembrane protein with tyrosine kinase activity. Gene amplification or protein expression of HER2 is a predictor of poor clinical outcome and decreased survival in women with breast cancer, and also indicates a favourable response to Trastuzumab (Herceptin) therapy, or a combinational therapy comprising Herceptin plus chemotherapy. However, resistance to Trastuzumab remains the case in approximately 50% of HER2 amplified/overexpressing tumours. Understanding the molecular mechanisms of Trastuzumab resistance and identifying more effective therapies, is critical in the treatment of patients whose breast cancers express this aggressive disease phenotype. In this study, it is postulated that the abnormal generation of mRNA splice variants may be responsible for the continued tumour growth and progression.

Aims:
The aim of this study is to increase our understanding of the role of HER2 splice variants in the development and progression of breast cancer. This will inform the
development of more sophisticated and effective therapies that target specific HER2 isoforms, rather than Herceptin, which targets just the generic wild type HER2 protein.

Materials and Methods:
The entire coding region of HER2 cDNA was PCR amplified using 12 sets of HER2 specific primers in HER2 positive cell lines (SKOV-3, SKBR-3, MDA-MB-453 and MDA-MB-361), and HER2 negative cell lines (BT-20, MDA-MB-361 MCF-7). These cell lines were also tested for protein expression of HER2 using Immunohistochemistry.

Results:
RT-PCR results suggest that there are alternatively spliced variants of HER2 between exons 12-15, 15-19, and 19-22 in the SKOV-3 and MDA-MB-453 cell lines, as well as potential exon deletions in the SKBR-3 cell line.

Conclusion:
In addition to a previously described exon 16 deleted HER2 transcript, our current findings have identified potential novel splice variants in the transmembrane and kinase domains of the HER2 gene in HER2 positive cell lines. Functional studies of the proteins encoded by these variants will be carried in order to elucidate any significant changes in the HER2 signalling pathways. In addition, the expression of these isoforms will be investigated in tissues from formalin fixed, paraffin embedded and frozen breast tumours.

3.

EVENT TITLE: CURRENT ISSUES IN BREAST CANCER CONFERENCE

VENUE: UNIVERSITY OF THE WEST OF ENGLAND

DATE: JULY 3, 2010

TITLE: BIOMEDICAL RESEARCH IN BREAST CANCER
4.

EVENT TITLE: CENTRE FOR RESEARCH IN BIOMEDICINE (CRIB) REVIEW DAY

VENUE: UNIVERSITY OF THE WEST OF ENGLAND

DATE: JULY 09, 2009

TITLE OF PRESENTATION: THE ROLE OF HER2 SPLICE VARIANTS IN INVASIVE BREAST CANCER

5.

EVENT TITLE: CENTRE FOR RESEARCH IN BIOMEDICINE (CRIB) REVIEW DAY

VENUE: UNIVERSITY OF THE WEST OF ENGLAND

DATE: MAY 26, 2009

TITLE OF PRESENTATION: THE FUNCTION AND ROLE OF HER2 SPLICE VARIANTS IN INVASIVE BREAST CANCER

6.

EVENT TITLE: CENTRE FOR RESEARCH IN BIOMEDICINE (CRIB) FORUM

VENUE: UNIVERSITY OF THE WEST OF ENGLAND

DATE: JANUARY 27, 2009

TITLE OF PRESENTATION: THE FUNCTION AND ROLE OF HER2 SPLICE VARIANTS IN INVASIVE BREAST CANCER