
We recommend you cite the published version. The publisher’s URL is: http://rheumatology.oxfordjournals.org/content/55/suppl_1/i134.1.extract?sid=1118a750-badb-45b6-bf89?39a995f10288

Refereed: Yes

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Rheumatology following peer review. The version of record Al-Sirri, N. F., Cramp, M., Barnett, S. and Palmer, S. (2016) The feasibility of using sonoelastography to identify the effect of joint hypermobility syndrome on elasticity of gastrocnemius muscle. Rheumatology, 55 (S1). i134 is available online at: http://rheumatology.oxfordjournals.org/content/55/suppl_1/i134.1.extract?sid=1118a750-badb-45b6-bf89?39a995f10288

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.
THE FEASIBILITY OF USING SONOELASTOGRAPHY TO IDENTIFY THE EFFECT OF JOINT HYPERMOBILITY SYNDROME ON ELASTICITY OF GASTROCNEMIUS MUSCLE

Najla F. Al-Sirri¹, Mary Cramp¹, Sue Barnett¹, Shea Palmer¹

¹Health and Applied Sciences, University of the West of England, Bristol, UK

Background: Joint hypermobility syndrome (JHS) is a heritable connective tissue disorder in which multiple synovial joints demonstrate a painful and extraordinary range of motion. Genetically there are abnormal changes in the connective tissue matrix in people with JHS, and that may alter the viscoelasticity of their muscular tissue. Sonoelastography (SEG) is a new technology in musculoskeletal practice for assessing tissue elasticity. This study aimed to determine the feasibility of using SEG to distinguish between those with and without a diagnosis of JHS. Gastrocnemius muscle (GM) elasticity was examined, as it is essential for balance and walking.

Methods: Twenty participants were examined in a cross-sectional feasibility study: 10 participants diagnosed with JHS and 10 age- and gender-matched healthy controls. The dominant GM was scanned three times using SEG. The colours of the SEG images indicate soft (red), intermediate (green) and hard (blue) tissues. ImageJ software was used to analyse the images by identifying the mean percentage of pixels of each colour.

Results: For the JHS group, nine females and one male were examined, with a mean age of 38.9 years (S.D. 15.53). Similarly, for the non-JHS group, nine females and one male were examined, with a mean age of 38.9 years (S.D. 12.37). The groups were comparable in terms of age, gender and BMI (P=1.00, 1.00, and 0.77, respectively). The JHS group had a significantly higher percentage of blue (hard tissue) pixels when compared with the control group (P=0.035). No significant differences were found in the mean percentage of green (intermediate) and red (soft) pixels (P=0.55 and P=0.051, respectively). SEG required a reasonable amount of training for clinicians with sufficient background in musculoskeletal anatomy, ~4 h of observation and practical training. The examination was completed in <5 min, so it may be reasonable for use in clinical practice, and it was well tolerated by patients. The SEG image was analysed in <5 minutes.

Conclusion: The results indicate that the GM in people with JHS had more areas of hard tissue when compared with the control group, contradicting the expected results. However, GM hyperactivity has been identified during walking in people with JHS, and increased muscle tone might therefore explain the findings. The findings need to be verified in a much larger future study. The SEG seems a feasible tool for quantifying muscular tissue elasticity in JHS.