The impact of new hybrid imaging technology on the nuclear medicine workforce: Opportunities and challenges

International Conference on Nuclear Medicine and Radiation Therapy, Cologne, Germany
14-15th July 2016
Background

• The introduction of new hybrid imaging technology requires appropriate staff training, considerations for service redesign and potential changes to patient workflow dynamics
• Staffing a modern hybrid imaging environment requires a skilled and competent workforce and an opportunity to further develop working practices and clinical service provision
• Balancing the needs of effective service delivery, workforce development and holistic patient-centric care requires careful planning and collaboration with a range of healthcare professionals

• There is a potential danger of ‘patient objectification’ during high technology examinations, such as hybrid imaging techniques, and the subsequent dehumanization process that may occur
Positioning: Professional Doctorate

‘Analyse the potential cultural changes and emerging social meanings within the nuclear medicine workforce, following the introduction of new hybrid imaging technology and the subsequent development of new professional identities and order within the health care environment’
Ethical / methodological considerations

- Ethical approval obtained in line with NHS requirements
- Multi-site research study
- Honorary contracts obtained at each clinical site
- Consent gained from research participants
- Organisational Ethnography methodology adopted
- Thematic analysis of interview data
Main themes identified

- Change in working practice, the environment and emerging clinical practice
- Role development / innovative practice and emerging sub-communities
- Role erosion and automation / technological determinism
- Emergence of new professional identity and intercollegiate working
- Need for new professional guidelines and training frameworks to be established
- Occupational shift and domain ownership
- Impact of technology on patients and creating a patient centric approach to hybrid imaging service delivery
Evolution
Nuclear Medicine Community

• Traditionally perform physiological imaging techniques
• Highly skilled & competent practitioners (Griffiths 2015)
• Some level of advanced practice & reflection (Griffiths et al., 2011)
• Some level of mentorship present (Dawson et al., 2009)
• Implementation of hybrid equipment has created an opportunity for professional re-order and role definitions
Techno-centric approach to the delivery of clinical services?
Changing the physical environment
Hybrid workflow

Wynn Jones et al., (2013)

Griffiths, (2014; 2015)
Road to change: Impact of hybrid imaging technology

Concerns over reduced patient contact

Mapping new ways of working / professional engagement

Use of new equipment brings professions together

Concerns of patient dose levels from additional CT examinations

Potential for increased decision making
Change in working practice, the environment and emerging clinical practice

– Change to the flow of patients through the clinical department
– Rebalancing of existing professional domains / identities
– Appropriate diffusion and adoption of new hybrid technology
– Introduction of PET/MRI requires new approaches to working
– Some evidence of skill mix / team working present
– Potential for a ‘protocol driven culture’ exists
Considerations for working in PET/MRI

• Working within a strong magnetic field (3T)
• Minimising exposure to ionising radiation during MR set up
• Working in teams to rotate examination / processing duties
• Increased psychological support required by patients during examinations
Potential safety issues in PET/MRI

- Metallic objects becoming missiles
- Patients / Staff with Pacemakers
- Specific patients / staff who have undergone surgery:
 - Clips / valves
 - Spinal work
- Patients / staff with dentures, coloured contact lenses, history of tattoos etc
- History of kidney problems / Glaucoma
Emergence of new professional identity and intercollegiate working:

- Some evidence of flat collaboration occurring
- New culture emerging
- Professional pride established
- New opportunities for preceptorship and mentorship
- Autonomous practice (e.g. dedicated CT / MR patient worklists)
- Practitioner driven protocols
‘There has been the development of problem solving abilities during the installation and in-house training of the SPECT/CT equipment within the Department. Working as a team, rather than individuals.’
Clear professional identity

Increased capabilities

Increased involvement within patient pathway

Greater scope for decision making

Gibbs and Griffiths, (2013)
Emerging culture

‘Introducing hybrid imaging technology has brought challenges in that there’s a steep learning curve for us, we’ve sort of drifted along, we’ve done nuclear medicine for a long time and all of a sudden there’s this new thing to learn.’

‘I think it’s increased the scope of the nuclear medicine technologists, the practitioner, the radiographer or whatever, because then they are more multi skilled. They can do nuclear medicine and they can do CT and those skills are transferable, the nuclear medicine practitioner could do a CT list as long as they’re educated properly enough and confident enough.’
A need for new professional guidelines and training frameworks to be established

- Lack of formal training and educational guidelines
- Limited professional networks in existence
- Distinct lack of career support mechanisms in hybrid imaging
- Concerns over the mapping of new aspects of service redesign and role development opportunities
- Limited support from equipment manufacturers post installation of new kit
Role development / innovative practice and emerging sub-communities

- Evidence of role development exists
- Need to reflect on the introduction of the new hybrid imaging technology
- Emergence of new patient pathways
- Creation of sub-communities – early adopters / cultural lag
- Lack of collaboration at times
Cultural lag: Impact on service provision

Ogburn (1966) refers to the term ‘cultural lag’ as a means of defining a period of maladjustment within society following the introduction of new systems / machinery etc, which may in turn lead to anxiety, confusion and the inefficient deployment of resources.

Cultural lag is considered an important aspect of social change and evolves, accumulating as a result of invention, discovery and diffusion (Brinkman and Brinkman, 1997).

Any delay in developing the appropriate knowledge and skills may impact on the efficient use of established resources within the healthcare environment (Kings Fund, 2012).
Cultural Lag

Projected lag in the development of new skills/techniques following the introduction of new technology (Hogg, 2012)
Making the best use of new technology

INVENTION
The originating idea for a new service or product, or a new way of providing a service.

ADOPTION
Putting the new idea, product or service into practice, including prototyping, piloting, testing and evaluating its safety and effectiveness.

DIFFUSION
The systematic uptake of the idea, service or product into widespread use across the whole service.
1999
- Uni-professional
- Traditional image production
- Limited understanding

2002
- Hybrid role emerges
- Notion of multi-Modality imaging/Image fusion
- Early adopters
- Pre-defined protocols

2004
- Greater involvement/Autonomy/decision making capacity
- Dedicated CT in SPECT/CT
- Restructuring of workforce

2006
- Greater flexibility with Hybrid systems
- Cultural lag demonstrated

2015+
- Evidence based practice
- Improved service delivery/One stop clinics
- Greater understanding of System capabilities

Emerging training needs
Occupational shift and domain ownership

- Traditional roles being eroded
- Impact of the digital push / pull culture in the clinical environment
- Tensions around domain ownership by sub-communities within the clinical environment
- Pressures being placed on workforce to manage the processing and data mapping
- Opportunities for service redesign
Professional ‘ripple’ and reorder

Skill level

Evolving technology

Patient & MDT Involvement / Autonomous practice

Ownership of technology

Automated processes Decision making processes

Professional ‘ripple’ and reorder
Interview quote: Ownership & identity

‘We have always previously provided the information and evidence for other professions to then go on and own the techniques and technology. This is now beginning to change, with both clinical scientists and practitioners developing the evidence base for themselves and their respective professions’

‘Competency based approach, improving the overall autonomous nature of the Nuclear Medicine Practitioner. However this can also lead to an apprehensive workforce, if they are unfamiliar with the protocols and setup of the department’
Role erosion and automation / technological determinism

- Deskilling of the NM workforce observed
- Professional erosion / social impact of new hybrid technology
- Technological determinism reported
- Tribal instincts present in some instances, preventing flat collaboration opportunities
Interview quote: Automation

‘You set the patient up; you just click the bone scan protocol you don’t have to set your window peak. You don’t have to set your window width. You don’t have to set any of the parameters, if you don’t want to. It sets automatically the programme speed for you and then when you process it, you just load up that data into the bone scan protocol and windows it for you to…..’

‘There are other tasks that all of a sudden, now you’re trusting these computers to do this stuff. You have to almost go through and double check their workings out and then the actual technological skill involved in the computer knowledge has had to increase exponentially, with regards sort of the processing of the data as well.’
We didn’t have anything from the equipment suppliers. I feel that has been a lack of interest in the first place. Considering the amount of equipment that we now have and the fact that we are a centre of excellence, I would have expected them to come in and be a little bit more involved in what’s going on......and now things are much more complex in terms of what you can possibly do.'
Reliance on technology?

- Pre-set protocols / workflows
- Start / Pause / Finish approach to working practice
- Push / pull of patient data
- Hidden identities of workforce
Environmental considerations

- Noise within the clinical imaging room (air conditioning for CT unit)
- Physical barrier introduced
- Emergence of additional workstations
- New language and imaging protocols
 - “Draw up the juice”
 - “How many clicks?”
 - “Pend, suspend, activate, archive”
- New radiation monitoring requirements
Training & audit

- Level of training should reflect the profile of your clinical department
- Assumptions of professional backgrounds should be treated with caution
- Training requirements should be factored into the business case for your new system
- Familiarisation with equipment & unexpected images necessary
- Audit system should be in place to monitor performance
- Regular Personal Development Reviews undertaken
Example competencies

Protocols in SPECT/CT
- Appropriate use of CT
- Value of AC & one stop shop imaging approaches

Quality control measures
- Optimising techniques
- Dose considerations & QC checks

Knowledge & Skills development
- Knowledge and understanding
- Radiation safety considerations
Impact

Griffiths et al, (2014)

University of the West of England, Bristol
Faculty of Health and Life Sciences
Allied Health Professions
CT competencies for Nuclear Medicine Practitioners working in a hybrid imaging environment
Version 15
Document owner: Marc Griffiths / University of the West of England, Bristol
Document date: 30/06/2015

* Nuclear Medicine Practitioners consist of Radiographers and Technologists
Interview quote: Role development

Interviewer: ‘Have the changes from the introduction of hybrid technology evolved your approach to work differently?’

Participant: ‘Definitely, it’s made everyone's, before there was a hierarchy within the department but now with this new technology that’s come in, everyone’s on a even footing to start with because we’re all introduced to it at exactly the same time and it’s the people who are more enthusiastic, who want to do more, who read more about their way to study more, finding themselves going further forward’
Impact of technology on patients and creating a patient centric approach to hybrid imaging service delivery

- Balancing the training needs of the Technologist / Practitioner with the needs of the patient (i.e. patient centric approach)
- Physical barriers now present between practitioner and patient
- Sense of isolation for the patient and the practitioner
- Practitioners are trying to create a patient centric approach to the delivery of care
- Shared learning with nursing colleagues
Supporting each other

- Patient experiences
- Psychological support
- The Kubler-Ross grief cycle
- Training / education
- Schwartz rounds
HYBRID IMAGING IN NUCLEAR MEDICINE: CREATING A PATIENT-CENTRIC APPROACH TO SERVICE DELIVERY

MARC GRIFFITHS, GARY DAWSON

Staffing a modern, hybrid imaging environment requires a skilled and competent workforce, who should have the opportunity to further develop their working practice and clinical service provision.

TECHNOLOGICAL POSITIONING

Health professionals across the world now work within an environment of flux and uncertainty which inevitably presents new challenges for the workforce, in terms of developing new skills and knowledge. This, when coupled with the need to provide high quality care, which enhances the individual patient experience, has resulted in a revolutionary change to the traditional role of the health professional. The introduction of any new hybrid imaging system may require appropriate staff training, considerations for service redesign and patient workflow dynamics, as part of the change process.

Collectively, the term 'hybrid imaging' relates to the physical fusion of more than one diagnostic imaging tool to provide anatomical and functional information in one environment. The emergence of the hybrid imaging workforce has arisen from the developing specialist area of clinical nuclear medicine over the last decade, mainly due to the introduction of new imaging hardware and developments within current patient treatment pathways. The ability to perform a hybrid imaging examination within a single physical environment provides clinicians with physiological and anatomical information, which may form part of the patient's initial diagnosis or evaluate their ongoing response to treatments such as radiotherapy and/or chemotherapy. The integration of new technology requires the modern healthcare professional to adopt a greater ‘evidence-based’ ethos, which is innovative, promotes quality patient care, and encourages ‘smart’ working practices that help deliver productivity savings.

Optimisation of SPEC/CT acquisition parameters is essential to current clinical practice, in order to minimise the patient dose from the CT element of the examination and to ensure that an appropriate level of anatomical information, which is both justified and adds clinical value to the imaging procedure, is acquired. There is a necessity for clear clinical protocols and appropriate use of CT within a hybrid imaging environment, especially where the patient may have recently undergone a diagnostic quality CT examination. Such activities would appear to warrant the development of clear clinical guidelines/protocols, which can help support the healthcare professional as to the appropriate use of CT within the hybrid imaging environment in order to ensure that patient safety can be maintained at all times.

The growing use of CT within the hybrid imaging environment has placed additional pressures on nuclear medicine practitioners, particularly nuclear medicine technologists, who make up a large percentage of the workforce; as previous or recent training and experience with CT may not have been undertaken. Balancing the needs of effective service delivery, workforce development and holistic patient-centric care requires careful planning and collaboration with a range of healthcare professionals. Introducing new hardware and software technology requires appropriate social frameworks, which may include ensuring the role of the practitioner is clearly defined in order that the emerging relationship with the patient is maintained. There is a potential danger of ‘patient objectification’ during high technology examinations, such as hybrid imaging and the subsequent dehumanisation process that may occur. Creating an environment where workforce flexibility is present, in terms of understanding the position of new technology within the patients' journey and a greater understanding of the need to reshape the delivery of such clinical services, is paramount to the ongoing development of hybrid imaging within the modern healthcare domain.

CHANGES IN WORKING PRACTICE AS A RESULT OF INTRODUCING HYBRID IMAGING TECHNOLOGY

Introducing new hybrid imaging technology may result in an increase in examination...
Hybrid Imaging Workforce

- Skill mix / training
- New technology / emerging techniques
- Emerging working culture
- Mentorship / preceptorship
- Knowledge / Understanding / Competency based practice
- Service improvement / research / audit
- Multidisciplinary working / role extension
References

References

• Griffiths M., Bailey D., Matthews F., Dawson G., (2014) Developing guidance for the appropriate use of Computed Tomography within a hybrid imaging environment, Imaging and Therapy Practice, June, pp 5-10

• Griffiths M., Creating the hybrid workforce: Challenges and opportunities, Journal of Medical Imaging and Radiation Science, 46, pp 262-270

References

• Griffiths M., King S., Fletcher S., Dawson, G., (2011) *Developing the Hybrid Imaging Workforce: A reflective learning approach*, British Nuclear Medicine Society Spring Meeting, [oral presentation], Brighton Conference Centre, Brighton

