Acknowledgments

For the motivation, support and inspiration provided by Myra Conway (director of studies) I cannot be thankful enough. Without her this thesis would never have been possible, and the occasions where I have struggled, her enthusiasm and drive have kept me going. I would also like to thank everyone at BRACE (Bristol Research into Alzheimer’s and Care of the Elderly) for funding this PhD. It has been an amazing opportunity that I am very grateful for.

At the University of the West of England, I would like to thank the rest of Team Conway past and present, in particular Marcela Usmari Moraes, Chris Lee, Tom Forshaw, Jon Hull, Mo Hezwani, Maya El-Hindy, Mai Shafei, Grace Okoro and Fred Hudd. They have been a fantastic group of people to work with, providing support and intelligent ideas when things didn't go to plan. Furthermore, the lab team need a big thanks for all of their help and patience, especially Dave Corry and Jeff Davey, and the extensive discussions and guidance of Man-Kim Cheung. I have to also thank the 1M9 office guys, in particular Niamh Brannelly, for sharing our frustrations, failures, successes and most importantly laughs along the way.

At the University of Bristol I must thank Pat Kehoe (second supervisor) for the catch-up meetings and late night corrections, they were greatly appreciated. The person who has really helped me through all of this experience has been my wife Lucy. The pep talks, weekend Boston Tea Party sessions and love and support through my stresses and frustrations along the way have been crucial, thank you! I would finally like to thank all of my family and friends for their continued love and support, despite being convinced that I will be a student forever. Let’s hope this thesis proves them wrong!
Abstract

Introduction and aims: The accumulation of misfolded Aβ and phospho-tau are characteristic features of AD pathology. One of the cellular mechanisms responsible for the removal of these aggregates is autophagy, where proteins and organelles are degraded through the formation of autolysosomes. Nutrient status regulates autophagy through crosstalk between several signalling pathways including mTOR and AMPK. Under fed conditions, BCAAs stimulate mTOR activity and downregulate autophagy. Conversely, under stress such as starvation, mTOR is inhibited and autophagy is initiated. In AD, autophagy is considered to be dysregulated and contributes to the build-up of misfolded proteins. As the hBCAT proteins, which metabolise BCAAs, are significantly up-regulated in AD brain, it is important to understand if this increase impacts mTOR and autophagy. Understanding of these mechanisms will offer insight into the clearance of protein aggregates and pathology underpinning AD.

Methods: Using molecular biological investigations, western blot analysis and confocal microscopy, the impact of increased hBCAT expression in neuronal cells was determined in response to nutrient and hormonal stimuli.

Results and discussion: This work demonstrates for the first time the impact of hBCAT overexpression on the autophagy and mTOR pathways. hBCAT overexpression resulted in an increase in mTOR activation, whereas autophagy was significantly increased at the lower concentrations of overexpression plasmid but decreased at the higher concentrations. Furthermore, hBCAT overexpression reduced the level of Aβ in a concentration-dependent manner. These findings indicate a concentration-dependent role for hBCAT in autophagy, consequently impacting Aβ load. The association of hBCATc with the membrane in response to insulin signalling is likely to play a role in this mechanism. Co-immunoprecipitation studies showing that PDI, the protein disulphide isomerase responsible for protein folding, and hBCAT interact offer additional novel roles for hBCAT in protein folding. Although this mechanism requires further interpretation, we anticipate that through its redox-active CXXC motif, hBCAT operates as a bifunctional enzyme switching between regulation of metabolic pathways such as mTOR and protein folding pathways, involving PDI. Developing the understanding of hBCAT’s role in the brain, in the context of AD, reveals new insights into the dysregulated pathways such as mTOR and autophagy. A greater understanding of these pathways has the potential to provide new therapeutic strategies in the future.
Contents Page

Chapter 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 - Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.1 - Alzheimer’s disease</td>
<td>2</td>
</tr>
<tr>
<td>1.2 - Autophagy</td>
<td>5</td>
</tr>
<tr>
<td>1.3 - Autophagy and Alzheimer’s disease</td>
<td>8</td>
</tr>
<tr>
<td>1.4 - Autophagy and mTOR signalling</td>
<td>12</td>
</tr>
<tr>
<td>1.5 - The human branched-chain aminotransferases</td>
<td>21</td>
</tr>
<tr>
<td>1.6 - Localisation of the human branched-chain aminotransferases</td>
<td>22</td>
</tr>
<tr>
<td>1.7 - Redox sensitive CXXC motif</td>
<td>24</td>
</tr>
<tr>
<td>1.8 - Oxidoreductase activity of PDI and hBCAT</td>
<td>26</td>
</tr>
<tr>
<td>1.9 - Potential for hBCAT involvement in cell signalling</td>
<td>29</td>
</tr>
<tr>
<td>1.10 - Summary</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 - Aims</td>
<td>33</td>
</tr>
<tr>
<td>2.0 - Materials and Methods</td>
<td>34</td>
</tr>
<tr>
<td>2.1 - Materials</td>
<td>35</td>
</tr>
<tr>
<td>2.2 - IMR-32 and SH-SY5Y cell culture</td>
<td>35</td>
</tr>
<tr>
<td>2.3 - Bradford assay</td>
<td>37</td>
</tr>
<tr>
<td>2.4 - Wet transfer Western blot</td>
<td>38</td>
</tr>
<tr>
<td>2.5 - Immunoprecipitation</td>
<td>38</td>
</tr>
<tr>
<td>2.6 - Overexpression of hBCATm-His</td>
<td>39</td>
</tr>
<tr>
<td>2.7 - Extraction and purification of hBCATm-His</td>
<td>40</td>
</tr>
<tr>
<td>2.8 - IMR-32 cell lysate pull-down using Ni Sepharose™</td>
<td>41</td>
</tr>
<tr>
<td>2.9 - Preparation of Lysogeny Broth (LB) agar plates</td>
<td>41</td>
</tr>
<tr>
<td>2.10 - LR recombination reaction</td>
<td>41</td>
</tr>
<tr>
<td>2.11 - Transformation of Library Efficiency® DH5α™ Cells</td>
<td>42</td>
</tr>
<tr>
<td>2.12 - Plasmid isolation from E. coli using the PureLink™ Hi-Pure Plasmid Mini Prep Purification Kit</td>
<td>43</td>
</tr>
<tr>
<td>2.13 - Agarose gel electrophoresis</td>
<td>44</td>
</tr>
<tr>
<td>2.14 - Transfection of IMR-32/SH-SY5Y cells with jetPRIME® transfection reagent</td>
<td>44</td>
</tr>
<tr>
<td>2.15 - Flow cytometry</td>
<td>45</td>
</tr>
<tr>
<td>2.16 - IMR-32 cell lysate pull-down using His Mag Sepharose Ni beads</td>
<td>45</td>
</tr>
<tr>
<td>2.17 - QuikChange Site-directed mutagenesis</td>
<td>45</td>
</tr>
<tr>
<td>2.18 - Cross-linked co-immunoprecipitation</td>
<td>47</td>
</tr>
<tr>
<td>2.19 - Subcellular fractionation</td>
<td>48</td>
</tr>
<tr>
<td>2.20 - Immunocytochemistry</td>
<td>48</td>
</tr>
</tbody>
</table>
Chapter 3

3.1 - Introduction: ... 52
3.2 - Specific Aims: .. 55
3.3 - Results: .. 56
 3.3.1 - Transfection with eGFP using the pcDNA3-EGFP vector. 56
 3.3.2 - Creating the hBCATm expression vector. .. 59
 3.3.3 - Western blot analysis of IMR-32 cell lysate transfected with hBCATm-His and bound to His Mag Sepharose Ni. 63
 3.3.4 - Creating the hBCATc expression vector. ... 65
 3.3.5 - Transfecting SH-SY5Y cells with hBCAT overexpression vectors. 67
 3.4 - Discussion: ... 70

Chapter 4

4.1 - Introduction: ... 75
4.2 - Specific aims: .. 77
4.3 - Results: .. 78
 4.3.1 - Western blot analysis of SH-SY5Y cells overexpressing hBCAT. 78
 4.3.2 - Confocal microscopy of SH-SY5Y cells overexpressing hBCAT... 85
 4.3.3 - Co-localisation of hBCATc with Vps34. .. 88
 4.3.4 - Treating SH-SY5Y cells overexpressing hBCATc with insulin...... 91
 4.3.5 - Treating SH-SY5Y cells overexpressing hBCATm with insulin. 95
 4.3.6 - Treating SH-SY5Y cells overexpressing hBCATc with leucine. 95
 4.3.7 - Treating SH-SY5Y cells overexpressing hBCATm with leucine. 100
 4.3.8 - The impact of hBCAT overexpression on amyloid and tau levels. 105
 4.3.9 - How insulin treatment affects the impact of hBCAT overexpression on amyloid and tau levels. ... 108
 4.3.10 - How leucine treatment effects the impact of hBCAT overexpression on amyloid and tau levels... 111
 4.3.11 - Confocal microscopy of GFP control cells. ... 115
 4.4 - Discussion: ... 117
 4.4.1 - The effect of hBCAT overexpression on autophagy 117
 4.4.2 - The effect of hBCAT overexpression on mTOR signalling. 119
 4.4.3 - Indirect and separate pathways to mTOR that could be affected by hBCAT overexpression. ... 121
 4.4.4 - The impact of insulin treatment alongside hBCAT overexpression. ... 121
 4.4.5 - The impact of leucine treatment alongside hBCAT overexpression. ... 125
 4.4.6 - Confocal microscopy of hBCAT expression. .. 126
4.4.7 - The impact of hBCAT overexpression on amyloid and tau expression and localisation. ... 128
4.4.8 - The impact of additional insulin treatment on amyloid levels and tau expression. ... 130
4.4.9 - The impact of additional leucine treatment on amyloid levels and tau expression. ... 132

Chapter 5 ... 134
5.1 - Introduction: ... 135
5.2 - Specific aims: ... 138
5.3 - Results: .. 139
 5.3.1 - Western blot analysis of IMR-32 and SH-SY5Y subcellular fractions. .. 139
 5.3.2 - Western blot analysis of stimuli effecting hBCATc membrane localisation. ... 141
 5.3.3 - Western blot analysis of co-immunoprecipitated SH-SY5Y cells examining phosphorylation... 146
 5.3.4 - Western blot analysis of subcellular fractions subject to phosphorylation by PKCα... 149
5.4 - Discussion: ... 153
 5.4.1 - Autophagy links with the cell membrane. 154
 5.4.2 - Insulin signalling and the possible role for hBCATc. 156
 5.4.3 - The effect of leucine treatment alongside insulin. 159
 5.4.4 - Glutamate signalling causing a decrease in membrane hBCATc. .. 160
 5.4.5 - PKC mediated phosphorylation of hBCATc.................................. 163
 5.4.6 - Potential mechanisms for membrane translocation of hBCATc. .. 165
 5.4.7 - Summary. .. 168

Chapter 6 ... 169
6.1 - Introduction: ... 170
6.2 - Specific aims: ... 172
6.3 - Results: .. 173
 6.3.1 - Epitope availability in hBCAT under native conditions. 173
 6.3.2 - Western blot detection for PDI complexed with hBCATm in IMR-32 cell lysates... 176
 6.3.3 - Western blot detection for PDI complexed with hBCATm in temporal brain homogenates.. 178
 6.3.4 - hBCATm-His purification. ... 180
 6.3.5 - Precipitation of IMR-32 cell lysate with hBCATm-His bound to Ni Sepharose™ beads... 184
 6.3.6 - Western blot detection of PDI from precipitated hBCATm-His bound to Ni Sepharose™ beads and incubated with IMR-32 cell lysate. 184
6.3.7 - Western blot analysis of IMR-32 cell lysate transfected with hBCATm-His and bound to His Mag Sepharose Ni 186
6.3.8 - Western blot analysis of overexpressed hBCATm-His in IMR-32 cells pulled-down with His Mag Sepharose Ni beads 189
6.3.9 - Western blot analysis of immunoprecipitated overexpressed hBCATm-His in IMR-32 cells ... 191
6.3.10 - Site-directed mutagenesis of hBCATm entry vector 191
6.3.11 - Creating the hBCATm-GFP expression vector 195
6.4 - Discussion: .. 199
6.4.1 - Native analysis of hBCATc, hBCATm and PDI 199
6.4.2 - hBCATm interaction with PDI .. 201
6.4.3 - An hBCATm tag for analysis of protein interactions 203
6.4.4 - Summary .. 206

Chapter 7 ... 207
7.1 - Summary: .. 208
7.2 - Future work .. 213
References: ... 215
Appendix 1: .. 275
Figure Contents Page

Figure 1.1 - The cleavage of APP by β-secretase and γ-secretase to form neurotoxic fragments .. 3
Figure 1.2 - The molecular mechanism for autophagy initiation 8
Figure 1.3 - The autophagy pathway ... 9
Figure 1.4 - Autophagic vesicle accumulation in the AD brain 12
Figure 1.5 - The mTORC1 complex .. 14
Figure 1.6 - Nutrient regulation of autophagy 18
Figure 1.7 - The first two steps of the BCAA catabolic pathway 21
Figure 1.8 - The role of hBCAT proteins in glutamate regulation 23
Figure 1.9 - Reversible oxidative activation of hBCATm 25
Figure 1.10 - The hypothetical disulphide relay system of Mia40 for the import of proteins into the IMS .. 28
Figure 3.1.1 - LR Recombination reaction between hBCAT entry and destination vector ... 54
Figure 3.3.1 - Bacterial growth of EGFP plasmids 57
Figure 3.3.2 - Electrophoresis of EGFP vectors 58
Figure 3.3.3 - Transfection of IMR-32 cells with EGFP 60
Figure 3.3.4 - Flow cytometry analysis of IMR-32 cells transfected with pcDNA3-EGFP ... 61
Figure 3.3.5 - Restriction digest of hBCATm entry vector 62
Figure 3.3.6 - Restriction digest of hBCATm expression vector 64
Figure 3.3.7 - Western blot analysis of IMR-32 cell lysate transfected with hBCATm-His and bound to His Mag Sepharose Ni 66
Figure 3.3.8 - Restriction digest of hBCATc expression vector 68
Figure 3.3.9 - Western blot analysis of SH-SY5Y cells transfected with hBCAT plasmids ... 69
Figure 4.3.1 - Western blot analysis of p70 S6 kinase and LC3 in SH-SY5Y cells overexpressing hBCATm ... 79
Figure 4.3.2 - Western blot analysis of SH-SY5Y cells overexpressing a range of hBCATm plasmid concentrations 81
Figure 4.3.3 - Western blot analysis of SH-SY5Y cells overexpressing a range of hBCATc plasmid concentrations 82
Figure 4.3.4 - Densitometry analysis of SH-SY5Y cells overexpressing
a range of hBCATm plasmid concentrations ... 83
Figure 4.3.5 - Densitometry analysis of SH-SY5Y cells overexpressing
a range of hBCATc plasmid concentrations ... 84
Figure 4.3.6 - Confocal microscopy of SH-SY5Y cells overexpressing
a range of hBCATm plasmid concentrations ... 86
Figure 4.3.7 - Confocal microscopy of SH-SY5Y cells overexpressing
a range of hBCATc plasmid concentrations ... 87
Figure 4.3.8 - Confocal microscopy of SH-SY5Y cells under
autophagy-inducing conditions ... 89
Figure 4.3.9 - Confocal microscopy of SH-SY5Y cells under mTOR
-inducing conditions .. 90
Figure 4.3.10 - Analysis of insulin treated SH-SY5Y cells
overexpressing a range of hBCATc plasmid concentrations 92
Figure 4.3.11 - LC3 analysis of insulin treated SH-SY5Y cells
overexpressing a range of hBCATc plasmid concentrations 93
Figure 4.3.12 - p70 S6 kinase analysis of insulin treated SH-SY5Y
cells overexpressing a range of hBCATc plasmid concentrations 94
Figure 4.3.13 - Analysis of insulin treated SH-SY5Y cells
overexpressing a range of hBCATm plasmid concentrations 96
Figure 4.3.14 - LC3 analysis of insulin treated SH-SY5Y cells
overexpressing a range of hBCATm plasmid concentrations 97
Figure 4.3.15 - p70 S6 kinase analysis of insulin treated SH-SY5Y
cells overexpressing a range of hBCATm plasmid concentrations 98
Figure 4.3.16 - Western blot analysis of leucine treated SH-SY5Y
cells overexpressing a range of hBCATc plasmid concentrations 99
Figure 4.3.17 - LC3 analysis of leucine treated SH-SY5Y
cells overexpressing a range of hBCATc plasmid concentrations 101
Figure 4.3.18 - p70 S6 kinase analysis of leucine treated SH-SY5Y
cells overexpressing a range of hBCATc plasmid concentrations 102
Figure 4.3.19 - Western blot analysis of leucine treated SH-SY5Y
cells overexpressing a range of hBCATm plasmid concentrations 103
Figure 4.3.20 - LC3 analysis of leucine treated SH-SY5Y
cells overexpressing a range of hBCATm plasmid concentrations 104
Figure 4.3.21 - p70 S6 kinase analysis of leucine treated SH-SY5Y
cells overexpressing a range of hBCATm plasmid concentrations 106
Figure 4.3.22 - Confocal microscopy of SH-SY5Y cells overexpressing a range of hBCATc plasmid concentrations probed for amyloid β and phospho-tau ... 107
Figure 4.3.23 - Confocal microscopy of SH-SY5Y cells overexpressing a range of hBCATm plasmid concentrations probed for amyloid β and phospho-tau ... 109
Figure 4.3.24 - Western blot analysis of insulin treated SH-SY5Y cells overexpressing a range of hBCATc plasmid concentrations 110
Figure 4.3.25 - Western blot analysis of insulin treated SH-SY5Y cells overexpressing a range of hBCATm plasmid concentrations 112
Figure 4.3.26 - Western blot analysis of leucine treated SH-SY5Y cells overexpressing a range of hBCATc plasmid concentrations 113
Figure 4.3.27 - Western blot analysis of leucine treated SH-SY5Y cells overexpressing a range of hBCATm plasmid concentrations 114
Figure 4.3.28 - Confocal microscopy of SH-SY5Y cells overexpressing GFP control plasmid probed for hBCAT, LC3, amyloid β and phospho-tau ... 116
Figure 4.4.1 - Insulin and growth factor signalling pathways involving PI3K .. 122
Figure 5.1.1 - hBCATc amino acid sequence ... 137
Figure 5.3.1 - Western blot analysis of hBCATc expression in IMR-32 subcellular fractions .. 140
Figure 5.3.2 - Western blot analysis of IMR-32 and SH-SY5Y subcellular fractions ... 142
Figure 5.3.3 - Western blot analysis of hBCATc expression in leucine-treated SH-SY5Y subcellular fractions .. 144
Figure 5.3.4 - Western blot analysis of hBCATc expression in glutamate-treated SH-SY5Y subcellular fractions .. 145
Figure 5.3.5 - Western blot analysis of hBCATc expression in leucine and insulin-treated SH-SY5Y subcellular fractions .. 147
Figure 5.3.6 - Western blot analysis for phosphorylation of hBCAT from immunoprecipitated SH-SY5Y cells .. 148
Figure 5.3.7 - Western blot analysis for hBCAT of immunoprecipitated SH-SY5Y cells .. 150
Figure 5.3.8 - Western blot analysis of hBCATc expression in
Phosphorylation/Inhibition of PKCα-treated SH-SY5Y subcellular fractions ... 152
Figure 5.3.9 - Western blot analysis of hBCATc expression in Phosphorylation/Inhibition of PKCα-treated SH-SY5Y subcellular fractions ... 153
Figure 5.4.1 - Negative feedback mechanism of the Insulin/PI3K pathway ... 158
Figure 5.4.2 – Glutamate signalling through mGluR 161
Figure 6.3.1 - hBCATc and hBCATm pure proteins separated by native PAGE .. 174
Figure 6.3.2 - Western blot analysis of IMR-32 cell lysates probed for hBCATc, hBCATm and PDI .. 175
Figure 6.3.3 - Western blot detection for PDI complexed with hBCATm in IMR-32 cell lysates .. 177
Figure 6.3.4 - Western blot detection for PDI complexed with hBCATm in IMR-32 cell lysates .. 179
Figure 6.3.5 - Western blot detection for PDI complexed with hBCATm in temporal brain homogenates .. 181
Figure 6.3.6a - hBCATm-His chromatography on a HiTrap™ Q HP column .. 182
Figure 6.3.6b - hBCATm-His purification fractions ... 183
Figure 6.3.7 - Precipitation of IMR-32 cell lysate with hBCATm-His bound to Ni sepharose™ beads .. 185
Figure 6.3.8 - Western blot detection of PDI from precipitated hBCATm-His bound to Ni sepharose beads and incubated with IMR-32 cell lysate .. 187
Figure 6.3.9 - Western blot analysis of IMR-32 cell lysate transfected with hBCATm-His and bound to His Mag Sepharose Ni .. 188
Figure 6.3.10 - Western blot analysis of overexpressed hBCATm-His in IMR-32 cells pulled-down with His Mag Sepharose Ni beads .. 190
Figure 6.3.11 - Western blot analysis of immunoprecipitated overexpressed hBCATm-His in IMR-32 cells .. 192
Figure 6.3.12 - Dpn I digestion post site-directed mutagenesis of hBCATm entry vector .. 194
Figure 6.3.13 - Confirmation of hBCATm entry vector mutant by sequencing...196

Figure 6.3.14 - Restriction digest of hBCATm-GFP expression vector ..197

Figure 6.4.1 - Proposed chaperone role for Ero-1 in the oxidation and regeneration of PDI during protein folding..202

Figure 6.4.2 - Histidine residues of human PDI ..205

Figure 7.1 - The impact of hBCAT overexpression on mTOR signalling..209
Abbreviations

Aβ - Amyloid-β peptide
AD - Alzheimer's disease
APOE - Apolipoprotein E
APS - Ammonium persulphate
APP - Aβ precursor protein
ATP - Adenosine triphosphate
AV - Autophagic vacuole
BCAA - Branched-chain amino acids
BCKD - Branched-chain α-keto acid dehydrogenase
BSA - Bovine serum albumin
CMA - Chaperone-mediated autophagy
DAPI - 4',6-Diamidino-2-phenylindole
DTT - Dithiothreitol
EBSS - Earle's balanced salt solution
EDTA - Ethylenediaminetetraacetic acid
ER - Endoplasmic reticulum
ERK1/2 - Extracellular signal-regulated protein kinases
GABA - Gamma-aminobutyric acid
GDH - Glutamate dehydrogenase
GLUT - Glucose transporter
Grx - Glutaredoxin
GSNO - S-nitrosoglutathione
GSH - Glutathione reduced

GSSH - Glutathione oxidised

hBCATc - Human branched-chain aminotransferase (cytosolic isoform)

hBCATm - Human branched-chain aminotransferase (mitochondrial isoform)

HEPES - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HRP - Horseradish peroxidase

IMR-32 - Human neuroblastoma cell line

LIR - LC3 interacting region

IMS - Intermembrane space

IPTG - Isopropyl β-D-1-thiogalactopyranoside

IR - Insulin receptor

IRS1 - Insulin receptor substrate 1

KIC - Ketoisocaproate

LRS - Leucyl-tRNA-synthetase

MAP4K3 - Mitogen-activated protein kinase kinase kinase kinase 3

mTOR - Mammalian target of rapamycin

mTORC1 - mTOR complex 1

mTORC1 - mTOR complex 2

NMDA - N-methyl-D-aspartic acid

NO - Nitric oxide

PAT1 - Proton-assisted amino acid transporter

PDI - Protein disulphide isomerase

PE - Phosphatidylethanolamine
PI3P - Phosphatidylinositol-3-phosphate

PIP3 - Phosphatidylinositol(3,4,5)phosphate-3

PKB - Protein kinase B (Akt)

PKC - Protein kinase C

PLP - Pyridoxal phosphate

RIPA - Radioimmunoprecipitation assay buffer

RPMI - Roswell park memorial institute medium

SDS - Sodium dodecyl sulphate

SNO-PDI - S-nitrosylated PDI

SNOs - S-nitrothiols

TBST - Tris-buffered saline/tween

TCA - Trichloroacetic acid

TEMED - Tetramethylethylenediamine

Trx - Thioredoxin

TSC1/2 - Tuberin sclerosis complex 1/2