List of figures

Figure 1: The action research cycle...pg.10
Figure 2: A flow diagram of the four phase research methodology........................pg.11
Figure 3: Jewellery elements for a broad collar faience necklace........................pg.23
Figure 4: Djoser faience tile, Old Kingdom...pg.23
Figure 5: Scarab amulet with wings..pg.24
Figure 6: Faience Djed Pillar...pg.24
Figure 7: Lotiform Cup ...pg.25
Figure 8: Was-sceptre, Egyptian faience ..pg.26
Figure 9: The movement of glaze material for all three faience glazing techniquespg.35
Figure 10: Faience Jewellery by Amy Waller ..pg.39
Figure 11: Isabel K-J Denyer: Egyptian paste, porcelain and silver necklacepg.40
Figure 12: Egyptian paste and steel sculpture by Deborah Sigelpg.41
Figure 13: 19th century pill making machine ..pg.45
Figure 14: Small and large beads made from silica pastepg.45
Figure 15: A slab of silica paste rolled out ready for modelling............................pg.46
Figure 16: The workers use metal frame moulds to make various designs.............pg.46
Figure 17: Multiple negative steel moulds for buttons..pg.47
Figure 18: Unfired buttons made from silica paste ...pg.47
Figure 19: Cementation glazed spherical beads ...pg.48
Figure 20: Cementation glazed buttons, small and large sizespg.48
Figure 21: Cementation glazed amulets and ornamentspg.49
Figure 22: Cementation glazed salt dishes and ornamentspg.49
Figure 23: Cross section of a Qom bead obtained in 2011 and its capsulepg.52
Figure 24: Iranian faience bead thought to have been glazed through the cementation method...pg.52
Figure 25: Cementation glazed bead from Qom obtained in the 1980's..............pg.53
Figure 26: Two-part terracotta mould used to produce Nu Shabtis by Z. Tajeddinpg.56
Figure 27: Nu shabtis by Z. Tajeddin. Fired pieces glazed through efflorescencepg.56
Figure 28: The Djed-pillar by Z. Tajeddin. Fired and glazed through efflorescence. ...pg.58
Figure 29: Egyptian Faience Vessel..pg.60
Figure 30: Pie chart showing the industries served by Additive Manufacturing.........pg.70
Figure 31: Pie chart showing the range of applications for Additive Manufacturingpg.70
Figure 32: A schematic of the Powder binder 3D Printing processpg.73
Figure 33: A schematic of the fused deposition modelling (FDM) process pg.76
Figure 34: Virtual potter’s wheel, created using a 3D scanner and digital design software for l’Artisan Electronique by Unfold Studio pg.81
Figure 35: Extruded pots: l’Artisan Electronique by Unfold Studio pg.81
Figure 36: Icebergs By Jonathan Keep. Objects formed through 3D paste extrusion pg.82
Figure 37: Objects formed through faience 3D paste extrusion (2012) pg.83
Figure 38: Tureen by Michael Eden, 3D printed, ceramic coated Tureen (2008) pg.84
Figure 39: Firing curve of the program used for efflorescence extrusion trials pg.90
Figure 40: Paste development trail 1: identification of best percentage china clay addition pg.91
Figure 41: Geometric beads. Poppy red stain (2.5%) pg.93
Figure 42: ‘Figure of 8’ bead pg.93
Figure 43: Various beads pg.94
Figure 44: Efflorescing hippo pg.96
Figure 45: Big vase and small vase pg.96
Figure 46: Various extruded objects in a range of colours pg.97
Figure 47: Cactus green stained body - material extruded through a 0.5mm diameter nozzle pg.98
Figure 48: Microwave kiln and faience bead pg.100
Figure 49: Faience beads; 3D printed using paste extrusion. Fried in a microwave kiln pg.101
Figure 50: Vases pg.104
Figure 51: Cementation glazed object (blue) surrounded by capsule that forms as part of the process pg.112
Figure 52: Illustration of silica migration and capsule formation in cementation process pg.112
Figure 53: Left, paint can and metal mixing stars. Right, paint can loaded into paint shaker for vigorous mix pg.115
Figure 54: Firing curves for the regular and slow firing schedules pg.117
Figure 55: 3D printed saggar with test discs made from BR1-3 pg.121
Figure 56: Fired test discs fused to surrounding glaze powder pg.121
Figure 57: Fired test pieces cementation glazed in GP2 pg.124
Figure 58: Underside of flint: fused silica test piece after firing pg.124
Figure 59: Hand formed objects fired in glaze powder containing calcium hydroxide pg.127
Figure 60: Hand formed objects glazed in glaze powder containing calcium carbonate

Figure 61: Photographs of stages 1 – 6 of the Cementation 3D printing process

Figure 62: 3D printed bead fired in a ceramic saggar and fired in GPR 3

Figure 63: A mixture of 3D printed beads glazed in GPR3 using a mixture of copper carbonate and cobalt oxide

Figure 64: 3D printed bead fired in glaze powder containing 35% sodium carbonate addition

Figure 65: 3D printed bead fired in glaze powder containing 20% sodium carbonate addition

Figure 66: 3D printed bead fired in glaze powder containing 17.5% sodium carbonate addition

Figure 67: 3D printed hippo amulet fired in glaze powder containing 15% sodium carbonate addition

Figure 68: 3D printed bead fired in glaze powder containing 12.5% sodium carbonate addition

Figure 69: 3D printed bead fired in glaze powder containing 10% sodium carbonate addition

Figure 70: Donkey beads cementation glazed in coloured glaze powders. Left to right, top row to bottom row; Chromium oxide, manganese carbonate, cobalt carbonate, and iron oxide

Figure 71: Cementation glazed 3D printed scarab coated in transparent glaze

Figure 72: 5% stained body (left) 10% stained body (right), cementation glazed

Figure 73: Batch 1 - Beads fired between 920°C-1000°C fired at 10°C increments

Figure 74: Batch 2 - Beads fired between 1005°C-1045°C fired at 5°C increments

Figure 75: Percentage shrinkage of cementation glazed objects fired at different peak temperatures

Figure 76: The friable glaze powder is removed from around the goblet

Figure 77: The goblet is carefully removed from the saggar

Figure 78: Fired saggar containing large necklace – still surrounded by the glaze powder

Figure 79: Necklace removed from saggar with glaze powder adhesion present on one side

Figure 80: The brightly glazed hippo is revealed within the saggar
Figure 81: Glazed Hippo ... pg.157
Figure 82: Sagger containing fired lattice pyramid .. pg.158
Figure 83: 3D printed, cementation glazed lattice pyramid pg.158
Figure 84: Cross sections of objects 3D printed in recipes BR4-BR6 pg.161
Figure 85: Objects made using BR6 recipe ... pg.161
Figure 86: Bisque firing schedule, time against temperature pg.164
Figure 87: Single fired hippo statuette ... pg.166
Figure 88: Hippo statuette, bisque fired to 1190°C and then cementation glazed pg.166
Figure 89: Scarab beetles, 3D printed in cementation glazed pg.167
Figure 90: 3D printed beads, cementation glazed in GP2 mixture pg.168
Figure 91: Lattice pyramid, 3D printed in cementation body BR5 and then cementation glazed in GP2 glaze mixture ... pg.170
Figure 92: Lattice pyramid, 3D printed in cementation body BR5, bisque fired to 1190°C and then cementation glazed in GP2 glaze mixture ... pg.170
Figure 93: LUDOX infiltrated 3D printed hippo statuette, cementation glazed pg.173
Figure 94: Multiple cementation glazed scarabs - infiltrated with LUDOX solution ... pg.174
Figure 95: Multiple hippo statuettes – infiltrated with LUDOX solution pg.174
Figure 96: 3D printed Parian body unfired (background) and fired (foreground) pg.178
Figure 97: Fishpig object being fabricated using the powder binder process pg.206
Figure 98: Cementation glazed Fishpig ... pg.206
Figure 99: 3D printed, cementation glazed Lattice pyramids pg.208
Figure 100: Photograph of a piece of Turquoise (left), a cementation glazed 3D printed scarab (middle) .. pg.208
Figure 101: 3D printed, cementation glazed necklace .. pg.209
Figure 102: 3D printed, LUDOX Infiltrated, cementation glazed bead, contained within its glaze capsule .. pg.210
Figure 103: 3D printed, LUDOX Infiltrated, cementation glazed scarabs pg.210
Figure 104: Left, paint can and metal mixing stars. Right, paint can loaded into paint shaker for vigorous mix ... pg.213
Figure 105: Firing curve of the program used for efflorescence powder binder trials pg.214
Figure 106: 3D printed tiles fabricated in efflorescence body (EB1a) before firing ... pg.219
Figure 107: 3D printed tiles fabricated in efflorescence body (EB1a) after firing to 950°C ... pg.219
Figure 108 Cross section of 3D printed tiles fabricated in efflorescence body (EB1a) after firing ... pg.219
Figure 109: Tiles subjected to different re-wetting conditions; sets 1-3. 3D printed in efflorescence body EB1b ... pg.222
Figure 110: Cross section of 3D printed tile built in efflorescence body EB1b, fired to 950°C... pg.222
Figure 111: Tiles made in EB1b body with 3% cobalt oxide fired between 825°C – 1025 °C .. pg.225
Figure 112: Tiles made in EB1b body with 15% Crimson stain fired between 825°C – 1025 °C ... pg.225
Figure 113: Tiles made in EB1b body with 15% yellow stain, fired between 825°C – 1025 °C .. pg.225
Figure 114: New objects being printed in crimson Eb1b body ... pg.232
Figure 115: Unfired objects in different coloured bodies ... pg.232
Figure 116: Fired ibis amulets ... pg.233
Figure 117: Reverse side of amulets .. pg.233
Figure 118: Cross section of Ibis amulet printed in EB1b (cobalt)... pg.234
Figure 119: Cross section of hippo statuette printed in EB1b (crimson) ... pg.234
Figure 120: Broad collar necklace, Middle Kingdom .. pg.235
Figure 121: New Kingdom lotus flower inlay .. pg.236
Figure 122: 3D model of wide and narrow bead design ... pg.237
Figure 123: 3D printed, self-glazed and single fired Egyptian inspired necklace ... pg.238
Figure 124: Cross section of the beads that make up the 3D printed, self-glazed and single fired Egyptian inspired necklace .. pg.239
Figure 125: Firing curve of the program used for efflorescence slip ... pg.243
Figure 126: Standing hippopotamus statuette ... pg.245
Figure 127: 3D model of hippo statuette ... pg.245
Figure 128: Side view of a 3D printed ceramic hippo coated in a faience slip. ... pg.246
Figure 129: Front view of a 3D printed ceramic hippo coated in a faience slip ... pg.246
Figure 130: Faience slip applied to various 3D printed ceramic objects ... pg.248
Figure 131: Faience slip applied to Ibis amulet dried in ambient conditions ... pg.248
Figure 132: Faience slip applied to Ibis amulet oven dried .. pg.248

Figure 8: Was-sceptre: © Victoria and Albert Museum. Available from: http://www.vam.ac.uk/users/node/3936 [Accessed 02 December 2015]

Figure 10: Faience Jewellery by Amy Waller: Amy Waller pottery. Available from: https://squareup.com/market/amywallerpottery [Accessed 02 December 2015]

Figure 11: Egyptian paste, porcelain and silver necklace: Isabel K-J Denyer Ceramics and Necklaces. Available from: http://isabeldenyer.co.uk/work/product/necklace-3 [Accessed 15 June 2015]

Figure 12: Egyptian paste and steel sculpture: Deborah Sigel. Available from: http://www.millersville.edu/~jpannafino/dsigel/work.html [Accessed 15 June 2015]

Figure 13: 19th Century Pill making machine: Tajeddin, Z. (2014) Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice. PhD, University College London

Figure 14: Small and large beads made from silica paste: Tajeddin, Z. (2014) Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice. PhD, University College London

Figure 15: A slab of silica paste: Tajeddin, Z. (2014) Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice. PhD, University College London
Figure 16: Metal frame moulds for modelling: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 17: Multiple steel moulds for modelling: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 18: Unfired buttons made from silica paste: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 19: Cementation glazed spherical beads: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 20: Cementation glazed buttons: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 21: Cementation glazed amulets and ornaments: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 22: Cementation glazed salt dishes: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 23: Cross section of a bead produced in Qom: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 25: Cementation glazed bead from 1980’s: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 26: Terracotta mould used to produce faience shabti: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 27: Fired Nu Shabtis: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 28: The Djed Pillar: Tajeddin, Z. (2014) *Egyptian Faience; Ancient Making Methods and Consideration of Technical Challenge in Sculptural Practice*. PhD, University College London

Figure 32: A schematic of the Powder binder 3D Printing process by P. Walters: Image available from: Peter2.Walters@uwe.ac.uk

Figure 33: A schematic of the fused deposition modelling (FDM) process: FDM by Zureks.png (2008) Available from: https://commons.wikimedia.org/wiki/File:FDM_by_Zureks.png [Accessed 17.01.16]

Figure 36: Icebergs by Jonathan Keep: Johnathan Keep Art (2016) Available from: http://www.keep-art.co.uk/index.htm [Accessed 17.01.16]

Figure 37: Extruded faience objects: Johnathan Keep Art (2016) Available from: http://www.keep-art.co.uk/journal_2.html [Accessed 17.01.16]

Figure 38: 3D printed, ceramic coated Tureen: By Michael Eden (2008) Available from: http://wedgwoodnt.blogspot.com [Accessed 17.01.16]

