Shock-Wave/Boundary Layer Interaction control using Spark-Jet and Micro-Vortex Generator

Jian Fang1, Guang Yang23, Yufeng Yao4, Chaoqun Liu3, Lipeng Lu2

1Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
2National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
3Department of Mathematics, University of Texas at Arlington, TX 76019-0448, USA
4Faculty of Environment and Technology, Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, United Kingdom

Objective & Conclusion

We present Large-Eddy Simulation of two control devices: active control by SparkJet and passive control by MVG. It is found that both methods can greatly alleviate the separation. Flowfield analysis shows that the streamwise counter-rotating vortex generated by the two devices might be the common control mechanism.

Numerical Methods

In-house SBLI code

- Fourth-order Central Difference
- Entropy Splitting for Convective terms
- Laplacian Form for Viscous terms
- SGS model: Mixed Time Scale
- Inflow BC: Digital Filter Method

With Immersed Boundary Method

“Ghost-point” based shape interface IB

Active Control by SparkJet

SparkJet Actuator

High voltage between electrode produce spark discharge, the heated gas would ejected from electric spark heating energy, the above orifice into main flow.

Computational Model

Actuator model represented by cubical cavity and neck, modeled by adding a source term in energy equation.

Numerical schlieren in the symmetry plane shows the blast wave in the cavity and jet near the orifice. Density contour and streamlines on a streamwise slice downstream the actuator present a pair of counter-rotating vortex.

Near the exit of the jet, a rectangular vortex ring resulting from the jet/cross-flow interaction can be seen.

Passive Control by MVG

Schlieren on the symmetry plane (left) current numerical result (right) experiment by Giepman et al (2014)

Downstream MVG, the vortex trail is generated due the K-H instability of the free-shear layer. The streamline downstream MVG shows that the vortex trail actually consists of two counter-rotating vortices.

The staggered double-row MVG generates a stronger vortex tail and causes a greater interaction with the shock-wave. Therefore it has a larger effect in suppressing flow separation downstream (black zone of the left figure).

Maximum jet velocity matches well with the experiment.

The flow separation (black zone) is suppressed by the SparkJet against the baseline case without control (red dashed line).

This work is supported by the UK Turbulence Consortium (EPSRC Grant No. EP/L000261/1) and National Natural Science Foundation of China (No. 11302012). The simulations were run on the UK High Performance Computing Service ARCHER.