Genotoxicity and functionality assessment of a bone marrow stromal cell line following chemotherapy in an *in vitro* model of multiple myeloma.

Simon William Andrews

This thesis is submitted in partial fulfilment of the requirements of the University of the West of England for the degree of Doctor of Philosophy in Biomedical Science

Faculty of Health and Applied Sciences, University of the West of England
Genotoxicity and functionality assessment of a bone marrow stromal cell line following chemotherapy in an in vitro model of multiple myeloma

Abstract

Multiple myeloma (MM) is a haematological malignancy characterized by terminally differentiated plasma cells and their accumulation in the bone marrow (BM). Despite significant advances in therapeutic strategies it currently remains incurable. The interactions between the BM microenvironment and malignant plasma cells have been pivotal to understanding this disease. Previous reports have shown that patients with a haematological malignancy sustain “damage” to their BM, but how much of this is due to the disease and/or the treatment is currently unknown. Furthermore MM plasma cells have been documented to harness the BM microenvironment to their advantage, improving their growth and survival. However, little is known about the functionality of BM mesenchymal stem cells (MSC) in patients with MM disease which form an essential compartment of the BM microenvironment. It was hypothesised that MSC altruistically protect MM cells from therapy and consequently become phenotypically and genetically compromised.

To facilitate the study of the effects of chemotherapeutic agents and MM cells on MSC, a non-contact co-culture model was developed that allowed the investigation of functional and genetic damage. In line with previous studies, the MM cell line, U266B1 were found to be protected from drug-induced cell death when in co-culture with the stromal cell line HS5. However, the promoting effects of the BM appear to be at the detriment to their own survival. HS5 cells were found to have lower viability, altered morphology and disrupted differentiation when in a non-contact co-culture with U266B1 cells.

Results from this study have revealed that interactions of MSC with MM cells lead to an altruistic protection of MM cells by the BM. This work demonstrates that U266B1 cells have an improved viability following exposure to chemotherapy when in a non-contact co-culture with MSC/HS5. Furthermore, genotoxic assays also revealed that HS5/MSC interactions with U266B1 cells protect U266B1 from the genotoxic effects of melphalan in co-culture, whilst for the first time HS5 morphology was shown to be severely altered following exposure to chemotherapy and when in co-culture with U266B1 cells.
This work has demonstrated, for the first time, the cytotoxic effects of novel agents bortezomib and carfilzomib on HS5 cells when in co-culture with U266B1 cells. Results from this study also demonstrate that melphalan severely effects the ability of HS5 cells to differentiate in an osteogenic lineage with a further deficiency in differentiation when in co-culture with U266B1. Adipogenic differentiation of HS5 was unable to take place when in co-culture with MM cells and was again further impaired by chemotherapy. This is the first study to reveal that primary MSC secrete significantly high concentrations of IL-6 compared to the stromal cell line HS5. A further increase in expression of IL-6 was also shown when in co-culture with U266B1 cells.

Increased multi-nucleation was also identified in both HS5 and U266B1 cells when exposed to either thalidomide, lenalidomide and bortezomib with abnormalities providing possible explanations for the therapy related malignancies and neurotoxicity that is seen in some patients. Genotoxicity to the MSC/HS5 compartment of the co-culture measured by the micronucleus assay was also found to be reduced suggesting that the BM is protected from the DNA damaging effects of some agents when in co-culture with MM cells.

Combined work on the functionality and genotoxicity of the interactions between the BM and MM reveal a tropism of MSC and HS5 towards the MM cell line U266B1. With this research being conducted in a non-contact co-culture, it has indicated that cell-cell contact is not essential to provide protection of both the BM and MM cells against chemotherapy. This research provides further understanding of the MSC and MM interactions’ impact on the functionality of the BM and their protection from genotoxic damage. Elucidating the consequence of cytotoxic and genotoxic damage to MSC via chemotherapy treatment and/or through haematological disease may allow for the development of effective therapies and improve the quality of life for patients with MM.
Acknowledgements

This thesis could not have been accomplished without the support and encouragement of numerous people including my family, friends and colleagues. It is my great pleasure to acknowledge all those people who made this thesis possible and an unforgettable experience for me.

Firstly I must acknowledge the invaluable guidance, understanding, and unceasing assistance that I have received from my director of studies, Dr Ruth Morse, and from which I have benefitted throughout my time at UWE. I am so grateful for her having constantly made time to discuss extensively my research, giving valuable suggestions and constructive criticism, whilst always providing encouragement. I also express my sincere gratitude to my supervisors Dr Craig Donaldson and Dr Jennifer May for all the help and guidance that they have afforded throughout my study.

In addition I would like to express my appreciation for the assistance and technical advice provided by Mr David Corry and Dr Jeff Davey. I am grateful to Dr David Patton, for his assistance with scanning electron microscopy, Mr Scott Lake for his involvement in the development of the ELISA for IL-6 and Ms Jennifer Razik for her contribution and help with the study of immunomodulatory agents on TK6 cells. My research would not have been possible without their help.

I am most grateful to UWE for providing the funding of this research. My time here was made enjoyable in large part by members of the CRIB lab and in particular the PhD students who were a source not only of friendship, but also sound advice and encouragement. You have all made the lab and the university a great place to work.

This PhD would not have been possible without the unfailing support of my family. Foremost, an enormous thank you to my parents for their love, unwavering support and immeasurable sacrifice. I am grateful for their having allowed me to move back home these last two years to complete my thesis and for their financial support. Thank you to my sister Kate and brother in law Steve, who have also encouraged me through the ups and downs of these last
few years. I am deeply indebted to my late grandparents, for their everlasting love, care and encouragement. Together they had always been enthusiastic supporters of my education and will always be remembered. Finally but definitely not least, I express my deep gratitude to my girlfriend Abbie. I am so appreciative of all her love and patience over the last few years and who has always been there to cheer me up and stood by me through the good times and bad. I would not have been able to do this without you.
Contents

Abstract... i
Acknowledgements.. iii
Contents... v
List of Figures.. x
List of Tables... xv
Abbreviations... xvi

Chapter 1: Introduction... 1
 1.1 Multiple Myeloma... 1
 1.1.2 Clinical features... 1
 1.1.3 Epidemiology.. 3
 1.1.4 Aetiology.. 5
 1.1.5 Prognosis and staging... 5
 1.2 Bone marrow microenvironment.. 7
 1.2.1 Mesenchymal stem cells.. 8
 1.2.2 Effects of chemotherapy on MSC... 10
 1.2.3 Effects of MM cells on MSC.. 11
 1.3 Adhesion molecules and cytokines.. 12
 1.4 Multiple myeloma bone disease... 16
 1.4.1 Normal bone remodelling... 16
 1.4.2 Bone remodelling in multiple myeloma... 18
 1.5 Treatment of multiple myeloma... 20
 1.5.1 Autologous stem cell transplant... 21
 1.5.2 Melphalan and prednisone... 22
 1.5.3 Thalidomide... 24
 1.5.4 Lenalidomide.. 25
 1.5.5 Proteasome inhibitors... 27
 1.5.5.1 The ubiquitin proteasome system... 27
 1.5.5.2 Bortezomib... 28
 1.5.5.3 Carfilzomib... 30
 1.5.6 Bisphosphonates... 31
 1.5.7 Monoclonal antibodies... 31
 1.5.8 HSP90 Inhibitors.. 32
 1.5.9 Side effects of treatment.. 32
 1.6 Drug resistance.. 33
 1.7 Genotoxic effects following chemotherapeutic insult.............................. 35
 1.7.1 DNA Damage... 35
 1.7.2 DNA repair mechanisms... 37
 1.7.3 Therapy related malignancy.. 39
 1.8 Current culture systems... 40
 1.9 Aims and objectives.. 43

Chapter 2: Materials and Methods... 44
 2.1 General methods.. 44
 2.1.1 Materials... 44
 2.1.2 Samples... 44
 2.1.3 MSC sample collection.. 44
 2.1.4 Cell lines.. 45
3.3.4 HS5 seeding density for the co-culture model......................... 86
3.3.5 BM-MSC seeded on the underside of the insert.................. 89
3.3.6 Scanning electron microscopy assessment of the co-culture model.. 92
3.3.7 IL-6 ELISA development... 95
3.4 Discussion... 101
3.4.1 Development of IL-6 ELISA... 107
3.5 Conclusion... 110

Chapter 4: Functionality of HS5 cell line in MM.......................... 111
4.1 Introduction.. 111
4.2 Methods.. 112
4.2.1 Trypan blue exclusion assay... 112
4.2.2 Microscopy... 112
4.2.3 Differentiation of HS5... 113
4.2.4 Flow Cytometry... 113
4.2.5 ELISA.. 113
4.2.6 Statistical analysis... 113
4.3 Results... 114
4.3.1 Trypan blue assessment of primary MSC, HS5 and U266B1 cell lines following chemotherapy... 114
4.3.1.1 Melphalan ... 114
4.3.1.1.1 MSC cultured alone and exposed to melphalan.............. 114
4.3.1.1.2 U266B1 cultured alone and exposed to melphalan...... 116
4.3.1.1.3 MSC co-cultured with U266B1 and exposed to melphalan... 117
4.3.1.1.4 U266B1 co-cultured with MSC and exposed to melphalan... 119
4.3.1.1.5 MSC bystander model... 121
4.3.1.1.6 U266B1 bystander model... 123
4.3.1.1.7 HS5 cells cultured alone and exposed to melphalan.... 125
4.3.1.1.8 Melphalan resistant U266B1 cultured alone and exposed to melphalan... 126
4.3.1.1.9 HS5 cells co-cultured with U266B1 sensitive and melphalan resistant U266B1 cells... 128
4.3.1.1.10 Melphalan resistant U266B1 cells in co-culture with HS5 cells... 130
4.3.1.2 Immunomodulatory agents... 132
4.3.1.2.1 HS5 cells cultured alone treated with thalidomide or lenalidomide.. 132
4.3.1.2.2 U266B1 cultured alone and treated with thalidomide or lenalidomide.. 134
4.3.1.2.3 HS5 cells co-cultured with U266B1 and exposed to thalidomide or lenalidomide.. 135
4.3.1.2.4 U266B1 cells co-cultured with HS5 cells and exposed to thalidomide or lenalidomide.. 136
4.3.1.2.5 HS5 bystander model... 138
4.3.1.2.6 U266B1 bystander model... 140
4.3.1.3 Proteasome inhibitors... 142
4.3.1.3.1 HS5 cells cultured alone and exposed to bortezomib or carfilzomib.. 142
Genotoxicity and functionality assessment of a bone marrow stromal cell line following chemotherapy in an in vitro model of multiple myeloma

4.3.1.3.2 U266B1 cultured alone and exposed to bortezomib or carfilzomib ... 144
4.3.1.3.3 HS5 cells co-cultured with U266B1 cells and exposed to bortezomib or carfilzomib 145
4.3.1.3.4 U266B1 cells co-cultured with HS5 cells and exposed to bortezomib or carfilzomib 147
4.3.1.3.5 HS5 bystander model ... 149
4.3.1.3.6 U266B1 bystander model 151

4.3.2 Phase contrast microscopy .. 153
4.3.2.1 HS5 morphology when cultured independently 153
4.3.2.2 HS5 morphology when co-cultured with U266B1 cells .. 158

4.3.3 HS5 Cell Differentiation .. 163
4.3.3.1 Osteogenic differentiation ... 163
4.3.3.2 Adipogenic differentiation .. 168

4.3.4 HS5 CD expression following chemotherapy exposure .. 172
4.3.5 ELISA ... 175
4.3.5.1 Levels of IL-6 in the MM model 175
4.3.5.2 IL-6 measured in MSC following exposure to melphalan .. 175
4.3.5.3 Levels of IL-6 in MSC and HS5 cells when cultured alone .. 177
4.3.5.4 IL-6 in HS5 cells following exposure to chemotherapy when cultured alone 178
4.3.5.5 IL-6 in U266B1 cells following exposure to chemotherapy when cultured alone 179
4.3.5.6 IL-6 in a non-contact co-culture of HS5 and U266B1 cells .. 180

4.4 Discussion .. 182
4.4.1 Cytotoxic assessment of MM model 182
4.4.2 HS5 Morphology following chemotherapy exposure .. 189
4.4.3 HS5 Cell differentiation .. 192
4.4.4 HS5 CD expression after chemotherapy treatment .. 197
4.4.6 Expression of IL-6 in the MM model .. 199

4.5 Conclusion .. 201

Chapter 5: Genotoxic assessment of MM .. 202

5.1 Introduction ... 202
5.2 Methods .. 203
5.2.1 Alkaline comet assay .. 203
5.2.2 Micronucleus assay ... 203
5.2.2.1 Cytochalasin-B protocol .. 204
5.2.3 Cell cycle analysis ... 204
5.2.4 Statistical analysis ... 204

5.3 Results ... 205
5.3.1 Alkaline comet assay results .. 205
5.3.1.1 Melphalan .. 205
5.3.1.2 Thalidomide ... 215
5.3.1.3 Lenalidomide ... 218
5.3.1.4 Bortezomib ... 221
5.3.1.5 Carfilzomib ... 224
5.3.2 Micronucleus assay results ... 227
5.3.2.1 Cytochalasin-B treatment of U266B1 cells 227
List of Figures

Figure 1.1:	Radiographs from patients with multiple myeloma	2
Figure 1.2:	Average number of new cases of multiple myeloma per year and age-specific incidence rates of multiple myeloma in males and females in the UK	4
Figure 1.3:	Number of new cases of MM per 100,000 persons by race and gender	4
Figure 1.4:	Confluent bone marrow mesenchymal stem cells in culture	9
Figure 1.5:	Cell-cell interactions in MM	13
Figure 1.6:	Schematic diagram depicting Ras/Raf/MAPK/ERK and JAK/STAT signalling pathways that are activated in MM	16
Figure 1.7:	Mechanisms of bone remodelling in health	18
Figure 1.8:	Chemical structure of melphalan	22
Figure 1.9:	Schematic image indicating the formation of DNA crosslinks as a result of melphalan treatment	23
Figure 1.10:	Chemical structure of thalidomide and lenalidomide	26
Figure 1.11:	Diagram of the structure and function the ubiquitin–proteasome protein degradation pathway	28
Figure 1.12:	Chemical structures of major proteasome inhibitors used in the treatment of MM	30
Figure 2.1:	The experimental set up of a 12 well culture plate used in this study	52
Figure 2.2:	Photomicrographs of the typical morphologies seen when scoring MN slides	57
Figure 3.1:	Morphology of U266B1 cells in different culture media	71
Figure 3.2:	Proliferation of U266B1 cells in different culture media	72
Figure 3.3:	Morphology of RPMI 8226 cells in different culture media	73
Figure 3.4:	Proliferation of RPMI 8226 cells in different culture media	74
Figure 3.5:	Morphology of primary MSC cells in different culture media	75
Figure 3.6:	Proliferation of MSC in different culture media	76
Figure 3.7:	Morphology of HS5 cells in different culture media	77
Figure 3.8:	Proliferation of HS5 in different culture media	78
Figure 3.9:	Cell viability of HS5 in different culture medium	79
Figure 3.10:	Images of initial co-culture of adhered MSC/HS5 and suspended U266B1 cells in complete DMEM/F12 medium	81
Figure 3.11:	Schematic diagram indicating the construction of a non-contact model of co-culture	82
Figure 3.12:	Determination of confluency of MSC seeded in a 12 well plate	84
Figure 3.13:	Determination of confluency of MSC seeded in a 12 well plate 6 days post initial seeding	85
Figure 3.14:	Comparison of cell size of BM-MSC vs HS5 stromal cell line	86
Figure 3.15:	Determination of confluency of HS5 seeded in a 12 well plate	87
Figure 3.16:	Determination of confluency of HS5 seeded in a 12 well plate 6 days post initial seeding	88
Figure 3.17:	Schematic diagram of the contact model of co-culture	89
Figure 3.18:	Co-culture set up of MSC/HS5 seeded on the underside of an insert	90
Figure 3.19: Representative image of MSC in the base of a 12 well plate, 24 hrs after the insert was returned to its original position……………… 90

Figure 3.20: Lipophilic tracer images of MSC on the underside of a 0.4 µm pore insert (A – x 10 magnification; B x 40 magnification).……………………………………… 91

Figure 3.21: Representative image of HS5 in the base of a 12 well plate, 24 hrs after the insert was returned to its original position……………… 92

Figure 3.22: SEM image of an MSC on the underside of a 0.4 µm pore insert (x 2013 magnification).…………………………………………………………… 93

Figure 3.23: SEM images of U266B1 in the basket of a 0.4 µm pore insert (A – x 400, B – x 6396 magnification, C x 25600 magnification)……………… 94

Figure 3.24: IL-6 ELISA titration assay set up………………………………………………………………………………… 95

Figure 3.25: Comparison of three ELISA plates with four standard curves on each plate……………………………………………………………………… 98

Figure 3.26: Comparison images of plates and standard curves produced using streptavidin peroxidase (A) and Pierce™ Streptavidin Poly-HRP (B)…………………………………………………………………… 99

Figure 3.27: Comparison of HQC and LQC IL-6 concentrations from standard curves produced using streptavidin peroxidase (A) and Pierce™ Streptavidin Poly-HRP (B).……………………………………………………………………… 100

Figure 4.1: Total cell numbers (A) and viability (B) of MSC after exposure to melphalan when cultured alone……………………………………… 115

Figure 4.2: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to melphalan when cultured alone……………………………………… 116

Figure 4.3: Total cell numbers (A) and viability (B) of MSC after exposure to melphalan when in co-culture with U266B1 cells……………………………………… 118

Figure 4.4: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to melphalan when in co-culture with MSC……………………………………… 120

Figure 4.5: Total cell numbers (A) and viability (B) of MSC after exposure to melphalan either directly or when in culture with previously exposed U266B1 cells……… 122

Figure 4.6: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to melphalan either directly or when in culture with previously exposed MSC……… 124

Figure 4.7: Total cell numbers (A) and viability (B) of HS5 cells after exposure to melphalan when cultured alone……… 125

Figure 4.8: Total cell numbers (A) and viability (B) of melphalan resistant U266B1 compared to non-resistant (sensitive) U266B1 cells following exposure to melphalan and cultured alone……… 127

Figure 4.9: Total cell numbers (A) and viability (B) of HS5 cells after exposure to melphalan in co-culture with melphalan resistant U266B1 cells……… 129

Figure 4.10: Total cell numbers (A) and viability (B) of U266B1 sensitive and melphalan resistant U266B1 after exposure to melphalan when in co-culture with HS5 cells……… 131

Figure 4.11: Total cell numbers (A) and viability (B) of HS5 cells cultured alone and after exposure to immunomodulatory agents……… 133

Figure 4.12: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to immunomodulatory agents alone……… 134

Figure 4.13: Total cell numbers (A) and viability (B) of HS5 cells after exposure to immunomodulatory agents while in co-culture with U266B1 cells……… 135
Genotoxicity and functionality assessment of a bone marrow stromal cell line following chemotherapy in an in vitro model of multiple myeloma

Figure 4.14: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to immunomodulatory agents when in co-culture with HS5 cells... 137

Figure 4.15: Total cell numbers (A) and viability (B) of HS5 cells after exposure to immunomodulatory agents either directly or indirectly via culture with treated U266B1 cells... 139

Figure 4.16: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to immunomodulatory agents either directly or indirectly via culture with treated HS5 cells... 141

Figure 4.17: Total cell numbers (A) and viability (B) of HS5 cells after exposure to proteasome inhibitors when cultured alone... 143

Figure 4.18: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to proteasome inhibitors when cultured alone... 144

Figure 4.19: Total cell numbers (A) and viability (B) of HS5 cells after exposure to proteasome inhibitors in co-culture with U266B1 cells... 146

Figure 4.20: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to proteasome inhibitors when in co-culture with HS5 cells... 148

Figure 4.21: Total cell numbers (A) and viability (B) of HS5 cells after exposure to proteasome inhibitors either directly or when co-cultured with previously exposed U266B1 cells... 150

Figure 4.22: Total cell numbers (A) and viability (B) of U266B1 cells after exposure to proteasome inhibitors either directly or when co-cultured with previously exposed HS5 cells... 152

Figure 4.23: Representative images of HS5 morphology following 1 hr exposure to melphalan at the clinically relevant dose compared to an untreated control... 155

Figure 4.24: Representative Images of HS5 morphology following 1 hr exposure with immunomodulatory agents at the clinically relevant dose compared to an untreated control... 156

Figure 4.25: Representative Images of HS5 morphology following 1 hr exposure with proteasome inhibitors compared to an untreated control... 157

Figure 4.26: Phase contrast images of HS5 cells following co-culture with U266B1 with and without treatment with melphalan at the biologically relevant dose for 1 hr... 160

Figure 4.27: Phase contrast images of HS5 cells following co-culture with U266B1 with and without treatment with immunomodulatory agents at clinically relevant doses for 1 hr... 161

Figure 4.28: Phase contrast images of HS5 cells following co-culture with U266B1 with and without treatment with proteasome inhibitors at biologically relevant concentrations for 1 hr... 162

Figure 4.29: Representative images of HS5 cells cultured independently and differentiated along osteogenic lineages following chemotherapy exposure... 165

Figure 4.30: Representative images of HS5 cells co-cultured with U266B1 and differentiated along osteogenic lineage following chemotherapy exposure... 167

Figure 4.31: Images depicting HS5 cells cultured alone, differentiated along adipogenic lineages following chemotherapy exposure... 169

Figure 4.32: Images depicting HS5 cells co-cultured with U266B1, differentiated along adipogenic lineages following chemotherapy exposure... 171
Figure 4.33: Representative histogram plots of CD makers on HS5 cells not exposed to chemotherapy... 172
Figure 4.34: Median fluorescence intensity (MFI) of CD markers on HS5 cells following 1 hr exposure of chemotherapeutic agents.................. 173
Figure 4.35: Concentration of IL-6 in primary MSC following exposure to melphalan when cultured alone or in co-culture (non-contact) with U266B1 cells.. 176
Figure 4.36: Comparison of the levels of IL-6 in primary MSC and HS5 cells when cultured independently and left untreated.................. 177
Figure 4.37: Concentration of IL-6 in the supernatant of HS5 cells when cultured alone following exposure to chemotherapy............... 178
Figure 4.38: Levels of IL-6 in U266B1 cells following exposure to chemotherapy when cultured alone... 179
Figure 4.39: Concentration of IL-6 in a non-contact co-culture of HS5 and U266B1 cells compared to when cells are cultured alone (A) and concentration of IL-6 in a non-contact co-culture of HS5 and U266B1 cells following exposure to chemotherapy (B)............. 181

Figure 5.1: DNA damage as measured by comet assay following melphalan exposure.. 207
Figure 5.2: Representative images of DNA damage in MSC following melphalan exposure when cultured alone as assessed by alkaline comet assay.. 209
Figure 5.3: Representative images of DNA damage in U266B1 cells following melphalan exposure when cultured alone as assessed by comet assay.. 210
Figure 5.4: DNA damage as measured by comet assay following melphalan exposure either directly or by the exposure of U266B1 or MSC.... 212
Figure 5.5: DNA damage as measured by comet assay in HS5 stromal cells and melphalan resistant U266B1 cells following melphalan exposure.. 213
Figure 5.6: DNA damage as measured by comet assay following melphalan exposure either directly or by the indirect exposure of melphalan resistant U266B1 or HS5... 214
Figure 5.7: DNA damage as measured by comet assay following thalidomide exposure.. 216
Figure 5.8: DNA damage as measured by comet assay following thalidomide exposure either directly or by the indirect exposure of U266B1 or HS5.. 217
Figure 5.9: DNA damage as measured by comet assay following lenalidomide exposure.. 219
Figure 5.10: DNA damage as measured by comet assay following lenalidomide exposure either directly or by the exposure of U266B1 or HS5.. 220
Figure 5.11: DNA damage as measured by comet assay following bortezomib exposure.. 222
Figure 5.12: DNA damage as measured by comet assay following bortezomib exposure either directly or by the indirect exposure of U266B1 or HS5.. 223
Figure 5.13: DNA damage as measured by comet assay following carfilzomib exposure.. 225
Figure 5.14: DNA damage as measured by comet assay following carfilzomib exposure either directly or by the indirect exposure of U266B1 or HS5.. 226
Figure 5.15: Representative image of U266B1 cells following exposure to cytochalasin-B.................................228
Figure 5.16: Numbers of micronuclei (MN) in primary MSC and HS5 stromal cells over a 72 hr period following exposure to Melphalan........230
Figure 5.17: Numbers of micronuclei (MN) in U266B1 sensitive and melphalan resistant cells over a 72 hr period following exposure to Melphalan..232
Figure 5.18: Representative images of micronuclei in HS5 cells following exposure to chemotherapy...233
Figure 5.19: Numbers of micronuclei (MN) in HS5 stromal cells over a 72 hr period following exposure to chemotherapy.................234
Figure 5.20: Numbers of micronuclei (MN) in U266B1 cells over a 72 hr period following exposure to chemotherapy........................235
Figure 5.21: Representative images of bi-nucleated HS5 and U266B1 cells....238
Figure 5.22: Numbers of bi-nucleated (BN) cells over a 72 hr period in HS5 stromal cells following exposure to chemotherapy.................240
Figure 5.23: Numbers of bi-nucleated (BN) cells over a 72 hr period in U266B1 cells following exposure to chemotherapy......................241
Figure 5.24: Representative images of multi-nucleated HS5 cells..................243
Figure 5.25: Numbers of multi-nucleated HS5 cells following exposure to chemotherapy over a 72 hr period..245
Figure 5.26: Numbers of multi-nucleated cells over a 72 hr period in U266B1 cells following exposure to chemotherapy.......................247
Figure 5.27: Representative images of multi-nucleated U266B1 cells following exposure to chemotherapy...248
Figure 5.28: Numbers of multi-nucleated HS5 cells following exposure to chemotherapy either directly or when in culture with previously exposed U266B1 cells over a 72 hr period.................................250
Figure 5.29: Numbers of multi-nucleated U266B1 cells following exposure to chemotherapy either directly or when in culture with previously exposed HS5 cells over a 72 hr period.................................251
Figure 5.30: Flow cytometry analysis of cell cycle in TK6 cells.....................252
Figure 5.31: Frequency of bi-nucleation on TK6 cells following cell synchronisation and exposure to immunomodulatory agents........254
Figure 5.32: Frequency of multi-nucleation on TK6 cells following cell synchronisation and exposure to immunomodulatory agents......255
Figure 5.33: Representative images of bi-nucleated and multi-nucleated on synchronised TK6 cells following thalidomide or lenalidomide exposure...256
List of Tables

Table 1.1: The Durie-Salmon staging system for MM…………………………… 6
Table 1.2: The International Staging System of MM…………………………………… 7
Table 2.1: The cell lines analysed in this study…………………………………… 46
Table 2.2: Details of antibodies used for ELISA in this study…………………… 62
Table 3.1: Representative data from antibody titration……………………………… 96
Table 3.2: Plate format/template during the standard curve development……………… 97
Table 5.1: RICC of MSC and HS5 cells cultured independently or in co-culture with U266B1 sensitive or melphalan resistant cells…………………………………… 229
Table 5.2: RICC of U266B1 sensitive and U266B1 melphalan resistant cells cultured independently or in co-culture with either MSC or HS5……… 231
Table 5.3: RICC of HS5 cells either cultured independently or in co-culture with U266B1 cells……………………………………………………………………… 233
Table 5.4: RICC of U266B1 cells cultured independently or in co-culture with HS5 cells………………………………………………………………………………………… 236
Table 5.5: RICC of HS5 cells in bystander model………………………………………… 250
Table 5.6: RICC of U266B1 cells in bystander model…………………………………… 251
Table 5.7: Percentage of TK6 cells in each phase of cell cycle………………………… 253
Table 5.8: RICC of TK6 cells treated with chemotherapy following cell synchronisation…………………………………………………………………………………… 254
Abbreviations

°C Degree Celsius
µg Microgram
µl Microlitre
µM Micro molar
µm Micrometre
nM Nanomolar
g/l Grams per litre
g/dl Grams per decilitre
pg/ml Picograms per millilitre
µg/ml Micrograms per millilitre
cm Centimetre
I.U International unit
U/ml International unit per millilitre
V/cm Volt per centimetre
mA Milliamperes
mmol/L Millimoles per litre
2D Two dimensional
3D Three dimensional
Ab Antibody
ALP Alkaline phosphatase
AOC Avon Orthopaedic Centre
ASCT Autologous stem cell transplant
ATCC American Type Culture Collection
β2M Beta 2 microglobulin
BER Base excision repair
BM Bone marrow
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM-MSC</td>
<td>Bone marrow mesenchymal stem cell</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>bFGF</td>
<td>Basic fibroblast growth factor</td>
</tr>
<tr>
<td>CAM-DR</td>
<td>Cell adhesion mediated drug resistance</td>
</tr>
<tr>
<td>CFU-F</td>
<td>Colony forming unit fibroblast</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>LFA-1/CD18</td>
<td>Lymphocyte function associated antigen / CD marker 18</td>
</tr>
<tr>
<td>VLA-4/CD49d</td>
<td>Very late antigen 4 / CD marker 49d</td>
</tr>
<tr>
<td>NCAM/CD56</td>
<td>Neural cell adhesion molecule / CD marker 56</td>
</tr>
<tr>
<td>VCAM-1/CD106</td>
<td>Vascular cell adhesion molecule 1 / CD marker 106</td>
</tr>
<tr>
<td>Dil/DiO</td>
<td>Long chain dialkylcarbocyanine lipophilic tracer</td>
</tr>
<tr>
<td>Dkk1</td>
<td>Dickkopf 1</td>
</tr>
<tr>
<td>DMEM/LG</td>
<td>Dulbecco’s Modified Eagle Medium low glucose</td>
</tr>
<tr>
<td>DMEM/HG</td>
<td>Dulbecco’s Modified Eagle Medium high glucose</td>
</tr>
<tr>
<td>DMEM/F12</td>
<td>Dulbecco’s Modified Eagle Medium and Ham's F-12 Nutrient Mixture</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DSB</td>
<td>Double strand break</td>
</tr>
<tr>
<td>ECACC</td>
<td>European Collection of Cell Culture</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein Barr virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>H2O2</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HDT</td>
<td>High dose therapy</td>
</tr>
<tr>
<td>Hsp90</td>
<td>Heat shock protein 90</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>HQC</td>
<td>High quality control</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexadimethylsilazane</td>
</tr>
<tr>
<td>Hr</td>
<td>Hour (s)</td>
</tr>
<tr>
<td>HR</td>
<td>Homologous repair</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>ISCT</td>
<td>International Society for Cellular Therapy</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus kinase</td>
</tr>
<tr>
<td>LFA-1</td>
<td>Lymphocyte function associated antigen-1</td>
</tr>
<tr>
<td>LMA</td>
<td>Low melt agarose</td>
</tr>
<tr>
<td>LQC</td>
<td>Low quality control</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony stimulating factor</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug-resistant</td>
</tr>
<tr>
<td>MGUS</td>
<td>Monoclonal gammopathy of undetermined significance</td>
</tr>
<tr>
<td>MNC</td>
<td>Mononuclear cells</td>
</tr>
<tr>
<td>MSC</td>
<td>Mesenchymal stem cell</td>
</tr>
<tr>
<td>MM</td>
<td>Multiple myeloma</td>
</tr>
<tr>
<td>MIP1-α</td>
<td>Macrophage inflammatory protein 1-alpha</td>
</tr>
<tr>
<td>Min</td>
<td>Min (s)</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NCAM</td>
<td>Neural cell adhesion molecule</td>
</tr>
<tr>
<td>NER</td>
<td>Nucleotide excision repair</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor κB</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-homologous end-joining</td>
</tr>
<tr>
<td>NRES</td>
<td>National Research Ethics Service</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PN</td>
<td>Peripheral neuropathy</td>
</tr>
<tr>
<td>RANK</td>
<td>Receptor activator of nuclear factor kappa-B</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of nuclear factor kappa-B ligand</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SSB</td>
<td>Single strand break</td>
</tr>
<tr>
<td>STAT3</td>
<td>Signal transducer of transcription 3</td>
</tr>
<tr>
<td>SMM</td>
<td>Smouldering multiple myeloma</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Transforming Growth Factor-Beta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor alpha</td>
</tr>
<tr>
<td>UPS</td>
<td>Ubiquitin-proteasome system</td>
</tr>
<tr>
<td>UREC</td>
<td>University of the West of England Ethics Committee</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>ZOL</td>
<td>Zoledronic acid</td>
</tr>
</tbody>
</table>