S-nitrosoglutathione spraying improves stomatal conductance, Rubisco activity and antioxidant defense in both leaves and roots of sugarcane plants under water deficit

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Physiologia Plantarum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>PPL-2016-00373</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Regular manuscript - Ecophysiology, stress and adaptation</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>03-Nov-2016</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Silveira, Neidiquele; Agronomic Institute, Center of Ecophysiology and Biophysics
Marcos, Fernanda; University of Campinas, Department of Plant Biology, Institute of Biology
Frungillo, Lucas; University of Edinburgh, School of Biological Sciences, Institute of Molecular Plant Sciences
Moura, Bárbara; University of Campinas, Department of Plant Biology, Institute of Biology
Seabra, Amedea; Federal University of ABC, Center of Natural and Human Sciences
Salgado, Ione; University of Campinas, Department of Plant Biology, Institute of Biology
Machado, Eduardo; Agronomic Institute, Center of Ecophysiology and Biophysics
Hancock, John; University of the West of England, School of Biosciences
Ribeiro, Rafael; University of Campinas, Department of Plant Biology, Institute of Biology |
| Key Words: | Antioxidant enzymes, Drought, Photosynthesis, Nitric oxide, Saccharum |
S-nitrosoglutathione spraying improves stomatal conductance, Rubisco activity and antioxidant defense in both leaves and roots of sugarcane plants under water deficit

Neidiquele M. Silveiraa, Fernanda C. C. Marcosb, Lucas Frungilloc, Bárbara B. Mourab, Amedea B. Seabrad, Ione Salgadob, Eduardo C. Machadoa, John T. Hancocke and Rafael V. Ribeirob,*

aLaboratory of Plant Physiology “Coaracy M. Franco”, Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas SP, Brazil
bDepartment of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas SP, Brazil
cSchool of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
dCenter of Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
eCentre for Research in Plant Science, University of the West of England (UWE), Bristol, UK

*Corresponding author, e-mail: rvr@unicamp.br

Abbreviations:

- A, leaf CO$_2$ assimilation; ABA, abscisic acid; APX, ascorbate peroxidase; CAT, catalase; C_i, intercellular CO$_2$ concentration; DAB, 3,3’-diaminobenzidine; ETR, apparent electron transport rate; g_s, stomatal conductance; GSH, glutathione; GSNO, S-nitrosoglutathione; MDA, malondialdehyde; NO, nitric oxide; O$_2^-$, superoxide anion; PEG, polyethylene glycol; PEP, phosphoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase; PPFD, photosynthetic photon flux density; PSII, photosystem II; ROS, reactive oxygen species; RuBP, ribulose-1,5-bisphosphate; Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RWC, relative water content; SOD, superoxide dismutase; WD, water deficit.
Abstract

Water deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S-nitrosoglutathione (GSNO), a NO donor, improves the antioxidant defense in both roots and leaves of sugarcane plants under water deficit, with positive consequences for photosynthesis. In addition, the role of key photosynthetic enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) in maintaining CO₂ assimilation of GSNO-sprayed plants under water deficit were evaluated. Sugarcane plants were sprayed with water or GSNO 100 µM and subjected to water deficit, by adding polyethylene glycol (PEG-8000) to the nutrient solution. Sugarcane plants supplied with GSNO presented increases in the activity of antioxidant enzymes such as SOD in leaves and CAT in roots, indicating higher antioxidant capacity under water deficit. Such adjustments induced by GSNO were sufficient to prevent oxidative damage in both organs and were associated with better leaf water status. As consequences, GSNO spraying alleviated the negative impact of water deficit on stomatal conductance and photosynthetic rates, with plants also showing increases in Rubisco activity under water deficit.

Keywords: Antioxidant enzymes; Drought; Photosynthesis; Nitric oxide; Saccharum.
Introduction

Low water availability is the main abiotic stress affecting sugarcane metabolism and reducing crop yield and biomass production (Ribeiro et al. 2013, Sales et al. 2013). Sugarcane plants facing water deficit present reductions in CO$_2$ assimilation, transpiration, stomatal opening, and decreases in tillering and culm length (Machado et al. 2009, Silva et al. 2012). While stomatal closure reduces CO$_2$ diffusion into mesophyll and then limit sugarcane photosynthesis under mild water deficit, metabolic limitation of photosynthesis occurs under severe water deficit through decreases in the activity of key photosynthetic enzymes such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) (Ghannoum 2009, Lopes et al. 2011). These responses may be associated with impairment of ATP and NADPH synthesis, reducing regeneration of both ribulose-1,5-bisphosphate (RuBP) and phosphoenolpyruvate (PEP) in C$_4$ plants (Lawlor 2002). In fact, photochemical impairment leading to low ATP and NADPH synthesis is found under drought and it is a result of reduced electron transport rate between PSII and PSI and damage to thylakoid membranes (Lawlor and Cornic 2002).

The redox status of cells is also changed under water deficit due to reduced consumption ATP and NADPH in reactions of CO$_2$ assimilation. Thus, the water deficit can disrupt cellular homeostasis and increase the production of reactive oxygen species (ROS). Increase in superoxide anion (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$) concentrations in plant cells is one of the first symptoms of exposure to drought, often accompanied by lipid peroxidation in cell membranes (Yamamoto et al. 2002, Tian and Lei 2006). To prevent or reduce cell damage due to ROS, plants have an antioxidant system based on enzymatic and non-enzymatic reactions. While the non-enzymatic reactions are mediated by ascorbate,
glutathione, flavonoids, carotenoids and tocopherols, the enzymatic mechanism consists of several enzymes located in different cellular compartments such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). During cell detoxification, O_2^- produced in the mitochondria, chloroplasts and peroxisomes is dismuted to H_2O_2 by SOD, which is rapidly eliminated by the CAT and APX, producing H_2O and O_2 (Foyer and Noctor 2005, Wu et al. 2012, Huseynova 2012).

Some studies have reported nitric oxide (NO) action in plants under drought (Santisree et al. 2015, Farnese et al. 2015), with this molecule cooperating in ABA-induced stomatal closure (Neill et al. 2003) and also increasing drought tolerance in *Vicia faba* (Garcia-Mata and Lamattina 2001). In fact, NO is an important plant messenger mediating various physiological and biochemical processes, which can directly alter protein structure and activity (Cai et al. 2015). NO has a multifunctional role and its effects on plants can be beneficial or not, depending on its concentration and type of donor when supplied. Recently, we found increases in root growth and maintenance of leaf water status in sugarcane plants under water deficit and supplied with NO. GSNO-sprayed plants exhibited increases in photosynthesis under water deficit, which was a consequence of high stomatal conductance and increased apparent carboxylation efficiency (Silveira et al. 2016).

While high S-nitrosothiols content in GSNO-sprayed sugarcane plants suggests a long-term role of NO-mediated responses to water deficit (Silveira et al. 2016), it is unclear whether improved photosynthesis is related to the activity of key photosynthetic enzymes Rubisco and PEPC. Few studies have addressed the effects of NO on Rubisco and PEPC activities, which are likely dependent on plant species and NO donor. For instance, Kovacs (2013) showed that NO can S-nitrosated Rubisco in a dose-dependent manner, reducing its activity.
Alternatively, improved performance of NO-supplied plants under drought may be due to reduced oxidative damage. NO can prevent oxidative damage by activation of antioxidant mechanisms and maintenance of ROS homeostasis in two turfgrass species (Hatamzadeh et al. 2014), increasing ascorbate levels and activity of antioxidant enzymes (Zhang et al. 2008). Furthermore, \(\text{O}_2^- \) can react with NO to form peroxynitrite (ONOO\(^-\)) and therefore control ROS accumulation (Radi et al. 2002). The protective effect of exogenous application of NO donor molecules has been attributed to the elimination of \(\text{O}_2^- \) and to increases in the activities of SOD, CAT and APX (Zhao et al. 2008). However, the consequences of such metabolic changes on photosynthetic metabolism remain unexplored. The activity of NADPH oxidase is also an important source of ROS under abiotic stress (Marino et al. 2012), with its activity reduced through \(S \)-nitrosylation mediated by NO (Yun et al. 2011).

While there is ample evidence of the involvement of NO in plant responses to drought, our knowledge about the underlying physiological processes leading to improved performance is still limited. In such context and using GSNO as a donor of NO, we hypothesized that leaf GSNO spraying improves the antioxidant defense of sugarcane plants under water deficit, with positive consequences for photosynthesis during and after such stressful condition. In addition, the role of key photosynthetic enzymes Rubisco and PEPC in maintaining \(\text{CO}_2 \) assimilation in GSNO-sprayed plants under water deficit was evaluated.
Material and methods

Plant material and experimental conditions

Sugarcane plants (*Saccharum* spp.) cv. IACSP94-2094 developed by ProCana Program (Agronomic Institute, IAC, Brazil) were propagated by placing mini-stalks from adult plants in trays containing commercial substrate composed of *Sphagnum*, rice straw and perlite in 7:2:1 ratio (Carolina Soil of Brazil, Vera Cruz RS, Brazil). Three-week-old plants with two to three leaves were transferred to modified Sarruge (1975) nutrient solution (15 mmol L\(^{-1}\) N (7% as NH\(_4^+\)); 4.8 mmol L\(^{-1}\) K; 5.0 mmol L\(^{-1}\) Ca; 2.0 mmol L\(^{-1}\) Mg; 1.0 mmol L\(^{-1}\) P; 1.2 mmol L\(^{-1}\) S; 28.0 µmol L\(^{-1}\) B; 54.0 µmol L\(^{-1}\) Fe; 5.5 µmol L\(^{-1}\) Mn; 2.1 µmol L\(^{-1}\) Zn; 1.1 µmol L\(^{-1}\) Cu and 0.01 µmol L\(^{-1}\) Mo) and maintained hydroponically in a growth chamber (PGR15, Conviron, Winnipeg MB, Canada) at 30/20 °C (day/night), 80% relative humidity, 12 h photoperiod (7:00 to 19:00 h) and PPFD of 800 µmol m\(^{-2}\) s\(^{-1}\). This PPFD was the maximum intensity at plant level, inside growth chamber. Plants were grown under the above conditions for 30 days prior to water deficit and GSNO spraying.

Sugarcane plants were subjected to water deficit (WD) by adding polyethylene glycol (Carbowax™ PEG-8000, Dow Chemical Comp, Midland MI, USA) to the nutrient solution. To prevent osmotic shock, PEG-8000 was added to the nutrient solution to cause a gradual decrease in its osmotic potential as follows: -0.25 MPa on the first day; -0.5 MPa on the second day; -0.6 MPa on the third day; -0.75 MPa on the 6\(^{th}\) day of treatment. From this point, the osmotic potential of the nutrient solution was monitored daily and corrected when necessary. After six days under water deficit (-0.75 MPa), plants were transferred to the original nutrient solution (-0.15 MPa) for rehybridation for three days.
Sugarcane leaves were sprayed twice a day with freshly prepared GSNO solutions at 100 µM. This concentration was based on a previous study in which significant increase of photosynthesis was found in sugarcane plants under water deficit (Silveira et al. 2016). Leaves were sprayed as follows: when the osmotic potential of nutrient solution reached -0.25, -0.5 and -0.6 MPa. The last GSNO spraying was done three days after reaching -0.75 MPa (9th day). GSNO spraying was done outside the growth chamber to avoid undesirable interference with other treatments. Plants were then subjected to the following treatments: control, under nutrient solution with osmotic potential of -0.15 MPa + water spray; water deficit (WD), under nutrient solution with osmotic potential of -0.75 MPa + water spray; and WD + GSNO spray (WDG).

Sampling was done at the maximum water deficit (12th day after adding PEG-8000 to the nutrient solution) and also at the recovery period (3rd day after returning plants to the control nutrient solution). Samples of leaves and roots were collected, immediately immersed in liquid nitrogen and then stored at -80°C for further enzymatic analyses.

Synthesis of S-nitroso glutathione (GSNO)

S-nitroso glutathione (GSNO) is an important donor of NO, which is a S-nitrosated derivative of the most abundant cellular thiol, glutathione (GSH). GSNO has been considered an internal source of NO and as an essential component of NO-dependent signal transduction pathway (Broniowska et al. 2013). GSNO was synthesized and characterized as previously described (Silveira et al. 2016). Briefly, the reduced glutathione (GSH) was reacted with equimolar sodium nitrite in acidified aqueous solution, acetone was added, and
the solution was washed with cold water, filtered and the obtained GSNO was freeze-dried for 24 h.

175

Leaf gas exchange and photochemical activity

176

Gas exchange of the first fully expanded leaf with visible ligule was measured daily using an infrared gas analyzer (Li-6400, Licor, Lincoln NE, USA) attached to a modulated fluorometer (6400-40 LCF, Licor, Lincoln NE, USA). Leaf CO₂ assimilation (A), stomatal conductance (gₛ) and intercellular CO₂ concentration (Cᵢ) were measured under PPFD of 2000 µmol m⁻² s⁻¹ and air CO₂ concentration of 400 µmol mol⁻¹. The measurements were performed between 11:00 and 13:00 h, as done by Silveira et al. (2016). The vapor pressure difference between leaf and air (VPDL) was 2.2±0.3 kPa and leaf temperature was 29±1 °C during the evaluations.

Chlorophyll fluorescence was evaluated simultaneously to the leaf gas exchange and the apparent electron transport rate (ETR) was estimated as \(ETR = \phi_{\text{PSII}} \times \text{PPFD} \times 0.85 \times 0.4 \), in which \(\phi_{\text{PSII}} \) is the effective quantum efficiency of photosystem II (PSII), 0.85 is the light absorption and 0.4 is the fraction of light energy partitioned to PSII (Edwards and Baker 1993, Baker 2008). The non-photochemical quenching was calculated as \(\text{NPQ} = (F_M - F_M')/F_M' \). The relative energy excess at PSII level was calculated as \(\text{EXC} = [(F_V/F_M) - \phi_{\text{PSII}}]/(F_V/F_M) \), in which \(F_V/F_M \) is the potential quantum efficiency of photosystem II (Bilger et al. 1995). A chlorophyllmeter (CFL 1030, Falkor, Porto Alegre RS, Brazil) was used to evaluate chlorophyll \(a \) and \(b \) and the relative content of chlorophyll (Chl) was calculated as chlorophyll \(a + b \).
Measurements were taken at the beginning of the experiment (before reducing the osmotic potential of nutrient solution), when the osmotic potential of nutrient solution reached -0.75 MPa, at the maximum water deficit, and three days after returning plants to the control condition (recovery period).

Relative water content

The relative water content (RWC) was calculated in leaf discs according to Jamaux et al. (1997): \(\text{RWC} = 100 \times \left(\frac{\text{FW} - \text{DW}}{\text{TW} - \text{DW}} \right) \), in which FW, TW and DW are the fresh, turgid and dry weights, respectively.

Activity of photosynthetic enzymes

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39)

Approximately 100 mg of leaves were macerated and homogenized with 0.5 mL of Bicine-NaOH buffer 100 mM (pH 7.8), 1 mM ethylenediaminetetraacetic (EDTA), 5 mM MgCl\(_2\), 5 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl fluoride (PMSF) and 10 \(\mu \)M leupeptin. The resulting solution was centrifuged at 14000 g for 5 min at 4 °C. The initial activity of Rubisco was measured using as medium 100 mM bicine-NaOH (pH 8.0) containing 10 mM NaHCO\(_3\), 20 mM MgCl\(_2\), 3.5 mM ATP, 5 mM phosphocreatine, 0.25 mM NADH, 80 nkat glyceraldehyde-3-phosphate dehydrogenase, 80 nkat 3-phosphoglyceric phosphokinase and 80 nkat creatine phosphokinase, incubated at 25 °C. The oxidation of NADH was initiated by adding 0.5 mM ribulose-1,5-bisphosphate
(RuBP). A similar aliquot was incubated with the reaction medium for 10 min at 25 °C and total Rubisco activity was measured after adding RuBP. The reduction of absorbance at 340 nm was monitored for 3 min. The activation state of Rubisco was calculated as the ratio between the initial and total activities (Sage et al. 1988, Reid et al. 1997).

Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31)

Approximately 100 mg of leaves were macerated and homogenized with 0.5 mL of 100 mM potassium phosphate buffer (pH 7.5), 1 mM EDTA and 1 mM PMSF and centrifuged at 14000 g for 25 min at 4 °C and the supernatant collected. The reaction medium for PEPC activity contained 50 mM Tris-HCl buffer (pH 7.8), 5 mM MgCl₂, 5 mM glucose 6-phosphate, 10 mM NaHCO₃, 33 nkat malic dehydrogenase and 0.3 mM NADH. The reaction was initiated by adding 4 mM phosphoenolpyruvate and incubated at 30 °C. The oxidation of NADH was monitored for 1 min (Degl'innocenti et al. 2002).

Reactive oxygen species

The quantification of hydrogen peroxide (H₂O₂) in plant material was performed following the method of Alexieva et al. (2001). Homogenates were obtained from 0.1 g of fresh tissue ground in liquid nitrogen with the addition of polyvinylpolypyrrolidone (PVPP) and 0.1% of trichloroacetic acid (TCA) solution (w/v). The extract was centrifuged at 10000 g and 4 °C for 15 min. The reaction medium consisted of 1.2 mL of KI 1 mM, potassium phosphate buffer (pH 7.5 and 0.1 M) and crude extract. The microtubes were incubated on ice under dark for 1 h. After this period, the absorbance was read at 390 nm.
A standard curve was obtained with H₂O₂ and the results were expressed as µmol H₂O₂ g⁻¹ FW.

To determine the concentration of the superoxide anion (O₂⁻), 50 mg of samples were incubated in an extraction medium consisting of 100 µM EDTA, 20 µM NADH, and 20 mM sodium phosphate buffer, pH 7.8 (Kuo and Kao 2003). The reaction was initiated by adding 100 µL of 25.2 mM epinephrine in 0.1 N HCl. The samples were incubated at 28 °C under stirring for 5 min and the absorbance was read at 480 nm for 5 min. Superoxide anion production was assessed by the accumulation of adrenochrome using a molar absorption coefficient of 4.0×10³ M⁻¹ (Gay and Gebicki 2000).

Lipid peroxidation

The concentration of malondialdehyde (MDA) was measured and used as a proxy of lipid peroxidation. One hundred fifty mg of plant tissue were macerated in 2 mL of 0.1% TCA (w/v) and centrifuged at 10000 g for 15 min. The supernatant was added to 1.0 mL of 0.5 % thiobarbituric acid (w/v) in 20% TCA (w/v), and the mixture was incubated at 95 °C. Two hours after the reaction, the absorbance was measured at 532 and 600 nm. The absorbance at 600 nm was subtracted from the absorbance at 532 nm and the MDA concentration was calculated using an extinction coefficient of 155 mM⁻¹ cm⁻¹ (Heath and Packer 1968).

Protein extraction and antioxidant activity
Plant extracts were obtained from the macerate of 0.1 g of fresh tissue (roots or leaves) with liquid nitrogen, 1% PVPP and 2 mL of extraction medium containing 0.1 M potassium phosphate buffer (pH 6.8), 0.1 mM EDTA and 1 mM PMSF. After centrifugation of the homogenates at 15000 g for 15 min and 4 °C, supernatants (crude extracts) were collected and preserved on ice. The protein levels of the enzymatic extracts were determined by the Bradford method (Bradford 1976) using bovine serum albumin (BSA) as the standard.

Catalase (CAT, EC 1.11.1.6) activity was quantified following the procedure described in Havir and McHale (1987). The reaction medium consisted of 3 mL of 100 mM potassium phosphate buffer (pH 6.8), deionized water, 125 mM H$_2$O$_2$ and crude extract. The reaction was carried out in a water bath at 25 °C for 2 min and activity assessed by the decrease in absorbance at 240 nm. The CAT activity was calculated using the molar extinction coefficient of 36 M$^{-1}$ cm$^{-1}$ and expressed as nmol min$^{-1}$ mg$^{-1}$ of protein.

Ascorbate peroxidase (APX, EC 1.11.1.11) activity was evaluated as described by Nakano and Asada (1981). The reaction medium was composed by 3 mL of 100 mM potassium phosphate buffer (pH 6.0), deionized water, 10 mM ascorbic acid, 10 mM H$_2$O$_2$ and crude extract. The reaction was carried out in a water bath at 25 °C for 2 min and activity monitored by the decrease in absorbance at 290 nm, using the molar extinction coefficient of 2.8 M$^{-1}$ cm$^{-1}$ to measure the APX activity, which was expressed as µmol min$^{-1}$ mg$^{-1}$ of protein.

Superoxide dismutase (SOD, EC 1.15.1.1) activity was determined according to Giannopolitis and Ries (1977). The reaction medium consisted of 3 mL of 100 mM sodium phosphate buffer (pH 7.8), 50 mM methionine, 5 mM EDTA, deionized water, crude extract, 100 µM riboflavin and 1 mM nitro blue tetrazolium chloride (NBT). A group of
tubes was exposed to light (fluorescent lamp of 30 W) for 8 min, and another group remained in darkness. The absorbance was measured at 560 nm and one unit of SOD is the amount of enzyme required to inhibit the NBT photoreduction in 50%, being expressed as U min$^{-1}$ mg$^{-1}$ of protein.

Superoxide dismutase zymogram

In order to check the cellular compartment in which the first line of enzymatic defense against oxidative damage was active, the identification of SOD isoforms was performed by native-PAGE electrophoresis in polyacrylamide gel (12.5%) at 4 °C under constant current of 40 mA in Tris-HCl (pH 8.3) and glycine buffer. The protein extract was obtained after maceration of a composite leaf sample (0.4 g, composed by ∼0.1 g per replicate) (Ferreira et al. 2002). SOD isoforms were identified through specific inhibition by H$_2$O$_2$ and KCN, with isoforms being classified as Mn-SOD (resistant to both inhibitors), Fe-SOD (resistant only to KCN) and Cu/Zn-SOD (inhibited by both inhibitors) (Azevedo et al. 1998).

Histochemical analysis

Samples of three leaves per plant (1 cm2) in three plants per treatment were cut and immediately immersed in a solution of 1 mg mL$^{-1}$ of DAB-HCl, adjusted to pH 5.6 with NaOH and incubated in dark for 8 h. Samples were taken at the maximum water deficit and they were cleared in 96% ethanol (Faoro and Iriti 2005) before transversal hand cuts. Samples were examined with a light microscope Olympus BX41 (Tokyo, Japan) fitted with
a digital camera (Media Cybernetics PL-A624, Bethesda MD, USA). H$_2$O$_2$ was visualized as a reddish-brown coloration. As a negative control, DAB solution was supplemented with 10 mM ascorbic acid (Faoro et al. 2001).

Data analysis

The experimental design was completely randomized and data were subjected to the ANOVA procedure. The Scott-Knott test was used to compare treatments when significance was found (P<0.05). The results presented are the mean ± SD and the number of replicates is stated in each figure caption.

Results

GSNO improves leaf water status and chlorophyll content under water deficit

As compared to well-hydrated plants, water deficit caused significant reduction in relative water content (RWC) of sugarcane plants at the maximum water deficit. Such reduction in RWC was alleviated when plants were sprayed with GSNO (Fig. 1A). Low water availability also reduced the chlorophyll content of sugarcane plants at the maximum water deficit and recovery period. Again, GSNO spraying alleviated the decreases in chlorophyll content caused by water deficit (Fig. 1B).

GSNO improves leaf gas exchange, photochemistry and increases Rubisco activity under water deficit
The water deficit induced a large reduction in leaf CO$_2$ assimilation of sugarcane plants from the 4th day of treatment, with GSNO treatment improving leaf CO$_2$ assimilation during the water deficit (Fig. 2A). The stomatal conductance was affected by water deficit and GSNO supplying in a similar way as compared to leaf CO$_2$ assimilation (Fig. 2B). There was a significant increase in intercellular CO$_2$ concentration (C_i) at the maximum water deficit when plants were not supplied with GSNO and subjected to water deficit (Fig. 2C). The apparent electron transport rate (ETR) was reduced due to water deficit. However, such negative effect of water deficit was nulled by GSNO only at the beginning of water deficit treatment (Fig. 2D). The consumption of electrons per CO$_2$ assimilated (ETR/A) was increased in plants under water deficit conditions. However, plants sprayed with GSNO presented lower ETR/A than plants under low water availability and without GSNO supplying, mainly at the maximum water deficit (Fig. 2E). Leaf GSNO spraying caused the lowest non-photochemical quenching at the maximum water deficit (Fig. 2F). While water deficit caused increases in excessive light energy at PSII (EXC), GSNO spraying led to reductions in EXC and then control plants and those treated with GSNO presented similar values during the first days of water deficit (data not shown).

Rubisco activity was decreased by 65% in plants under water deficit and increased above 82% from controls by GSNO supplying (Fig. 3A). On average, GSNO-supplied plants presented Rubisco activity almost two-fold higher than control ones at the maximum water deficit (Fig. 3A). On the other hand, the Rubisco activation state (Fig. 3A, insert) and PEPC activity were not affected by water deficit or GSNO supplying (Fig. 3B).

GSNO and oxidative damage
Even without a statistical difference in leaf H$_2$O$_2$ levels among treatments (data not shown), the histochemical analysis revealed H$_2$O$_2$ close to the stomata of plants under water deficit and without GSNO supplying (Fig. 4). At the maximum water deficit and recovery period, the highest O$_2^-$ concentrations in both leaves and roots were found in plants subjected to water deficit. Interestingly, plants supplied with GSNO and control ones presented similar leaf and root O$_2^-$ concentrations (Fig. 5A,B). Leaf lipid peroxidation was not changed by treatments. However, there was an increase in root MDA content of plants under water deficit without GSNO supplying at the recovery period (Fig. 5C,D).

GSNO stimulates the antioxidant system under water deficit

In plants sprayed with GSNO, root CAT activity increased by 44% at the maximum water deficit and by 49% at the recovery period, as compared to control ones (Fig. 6B). Leaf CAT activity decreased due to water deficit, regardless whether GSNO was supplied or with evaluation time (Fig. 6A). At the maximum water deficit, leaf APX activity was increased only in plants subjected to water deficit and without GSNO treatment (Fig. 6C). In roots, APX activity decreased due to water deficit and GSNO spraying did not modify this response at the maximum water deficit and recovery period (Fig. 6D). Compared to the control condition, leaf SOD activity was significantly increased by GSNO spraying at the maximum water deficit (Fig. 6E). Root SOD activity was increased by water deficit, regardless GSNO spraying and evaluation time (Fig. 6F).

The SOD zymogram revealed details about the activities of SOD isoforms, which were numbered arbitrarily based on the order of appearance on the gels. When considering
leaf SOD isoforms, five isoforms were identified in control treatment and seven in water
deficit, regardless of GSNO spraying (Fig. 7). There were four and seven root SOD
isoforms in control and water deficit conditions, respectively. In leaves, Cu/Zn-SOD
isoforms iii and iv were detected only under water deficit, regardless of GSNO spraying.
However, GSNO increased the activity of all SOD isoforms when compared to the other
treatments. In roots, Mn-SOD isoform iii and Cu/Zn-SOD isoforms v and vi were detected
only in plants under water deficit, regardless of GSNO supplying (Fig. 7).

Discussion

How does GSNO improve photosynthesis under water deficit?

Our findings clearly show that leaf GSNO spraying improves sugarcane tolerance to
water deficit by improving photosynthetic rates. Such improvement in leaf CO₂
assimilation was associated, in part, with higher RWC and higher stomatal conductance
under water deficit (Figs. 1A, 2B). For instance, GSNO treatment increased by seven times
the stomatal conductance at the maximum water deficit as compared to plants sprayed with
water (Fig. 2B). It could be argued that improvements in leaf water status were concomitant
with the stomatal conductance in GSNO-sprayed plants under water deficit, which was
lower than in control plants (Fig. 2B). As consequence, GSNO-sprayed plants would
minimize water vapor loss through transpiration (data not shown) and maximize CO₂
availability in intercellular spaces. Accordingly, control plants and those sprayed with
GSNO presented similar Cᵢ values throughout the experimental period (Fig. 2C).
Besides the diffusive limitation of photosynthesis imposed by stomatal closure under water deficit, plants may face biochemical limitation under severe drought. Then, GSNO would also improve CO$_2$ uptake under water deficit through changes in the activity of key photosynthetic enzymes. In fact, plants supplied with GSNO exhibited an increase in Rubisco activity under water deficit (Fig. 3A). Beligni and Lamattina (2002) found that the NO delayed Rubisco mRNA loss caused by treatment with the herbicide Diquat in potato leaves. On the other hand, NO can also S-nitrosylate Rubisco causing reduced Rubisco activity in a dose-dependent manner (Kovacs et al. 2013, Santisree et al. 2015). As possible explanation for contradictory effects of NO on Rubisco, we would consider the NO donor and its concentration as well as plant sensitivity, which likely vary among plant species. By spraying GSNO 100 µM, our data clearly show improvements in sugarcane photosynthesis through different techniques and approaches, i.e., measuring leaf gas exchange and using biochemical assays.

GSNO also alleviated chlorophyll degradation (Fig. 1B), which is in agreement with previous studies showing that exogenous application of NO may attenuate chlorophyll degradation under stressful conditions (Eum et al. 2009, Wang et al. 2015). Accordingly, plants sprayed with GSNO presented higher photochemical activity under water deficit as compared to those sprayed with only water and also subjected to water deficit. Besides showing ETR values similar to control plants during the beginning of water deficit (Fig. 2D), plants sprayed with GSNO presented less activity of alternative electrons sinks under water deficit (Fig. 2E). Low non-photochemical quenching of chlorophyll fluorescence also suggests less excessive light energy at the PSII level (Fig. 2F).
Taken together, we may argue that GSNO spraying benefited plants through improvements in leaf water status, which may be a consequence of better water balance caused by increases in water supply by roots and/or reduced water loss by stomatal conductance while maintaining CO$_2$ availability for photosynthesis. Such higher photosynthetic rates may also be due to increases in Rubisco activity in GSNO-sprayed plants with an important regulatory role at the PSII level as the main sink of ATP and NADPH. While less energetic pressure at PSII level can be maintained by using of reducing power and ATP in CO$_2$ assimilatory reactions under low water availability, an active antioxidant system would also prevent oxidative damage induced by drought. Therefore, GSNO effects on antioxidant metabolism were further investigated in both roots and leaves of sugarcane under water deficit.

GSNO improves antioxidant defense in both roots and leaves under water deficit

Water deficit induced leaf O$_2^-$ accumulation (Fig. 5A) without a concomitant increase in SOD activity (Fig. 6E) in plants without GSNO spraying. Presence of H$_2$O$_2$ in leaves of plants under water deficit (Fig. 4B) was also found even with increases in APX activity (Fig. 6C). As CAT activity was reduced and leaves presented H$_2$O$_2$ under water deficit, one would argue that the main H$_2$O$_2$ detoxification pathway in sugarcane is through CAT activity. In roots, accumulation of O$_2^-$ was also found under water deficit, with increases in SOD activity and decreases in APX activity (Figs. 5A, 6D,F). Interestingly, GSNO-sprayed plants did not present any increase in O$_2^-$ and presence of H$_2$O$_2$ in leaves (Figs. 4, 5A,B) and GSNO stimulated leaf SOD activity and root CAT activity under water deficit (Figs. 4C, 6B,E).
The increase in total SOD activity (Fig. 6E) in leaves sprayed with GSNO was associated with increases in the activity of mitochondrial (i-Mn-SOD), chloroplastidial (ii-Fe-SOD) and cytosolic (iii-Cu/Zn-SOD) isoforms (Fig. 7). As a product of SOD activity, accumulation of H$_2$O$_2$ in leaves would be expected. However, evidence of H$_2$O$_2$ production was not found in GSNO-sprayed plants under water deficit. It is known that the detoxification of H$_2$O$_2$ can also be achieved by non-enzymatic antioxidants such as non-protein thiol, ascorbate, GSH or proline. Therefore, the protective effect observed by leaf GSNO spraying could be also associated with increases in GSH availability. GSNO is decomposed by GSNO reductase to oxidized glutathione (GSSG), which is the substrate of the glutathione reductase (GR) that regenerates GSH (Corpas et al. 2013). In fact, GSH spraying improved photochemical activity in sugarcane leaf discs subjected to natural drying (Silveira et al. 2016).

Although we have not found evidence of membrane damage under water deficit in both leaves and roots (Figs. 5C,D), effects of oxidative stress on protein and DNA integrity and function cannot be ruled out (Oliveira et al. 2010). Leaf and root O$_2^\cdot$ concentrations remained high even after the recovery period in plants previously exposed to water deficit, with increased lipid peroxidation in roots (Figs. 5A,B,D). The production of ROS may occur by the action of NADPH oxidase and peroxidases, causing an oxidative burst during rehydration (Colville and Kranner 2010), which was also avoided in both leaves and roots by spraying GSNO on leaves.

The changes observed in antioxidant metabolism indicate that leaf GSNO spraying increased the antioxidant responses of both leaves and roots, avoiding oxidative damage induced by O$_2^\cdot$ and H$_2$O$_2$ under water deficit. Such responses may be related to plant water status as H$_2$O$_2$ may inhibit aquaporin activity and reduce water transport (Liu et al. 2015).
In fact, higher RWC and stomatal conductance in GSNO-sprayed plants were noticed (Figs. 1A, 2B). Silva et al. (2015) have already reported that sugarcane genotypes showing an active antioxidant metabolism are able to maintain root hydraulic conductance and leaf gas exchange under water deficit. Additionally, NO by itself has been reported to play an important role in aquaporin regulation by stimulating the transcription of OsPIP1;1, OsPIP1;2, OsPIP1;3 and OsPIP2;8 isoforms during rice seed germination (Liu et al. 2007). Further studies about the potential effect of NO on plant hydraulic conductance and aquaporin expression and activity should reveal another interesting interaction among this radical, antioxidant metabolism and plant water balance.

Conclusion

Sugarcane plants supplied with GSNO presented increases in the activity of SOD in leaves and CAT in roots, indicating higher antioxidant capacity under water deficit. Such adjustments induced by GSNO were sufficient to prevent oxidative damage in both organs and were associated with better leaf water status. As consequence, GSNO spraying alleviated the negative impact of water deficit on stomatal conductance and photosynthetic rates, with plants also showing increases in Rubisco activity under water deficit. Herein, we not only gave one step more toward the understanding of how NO may modulate plant responses to water deficit but also we provided insights about the underlying physiological processes supporting improved plant performance under stressful conditions.

Acknowledgment
The authors acknowledge the financial support provided by the São Paulo Research Foundation (FAPESP, Brazil) through the BIOEN Program (Grant no. 2008/57519-2) as well as the scholarship (NMS, Grant no. 2012/19167-0) and fellowship (BBM, Grant no. 2014/13524-0) granted. LF is a European Molecular Biology Organization (EMBO) - Long Term Fellow (n°. 420/2015). The authors also acknowledge the fellowships (ABS; IS; ECM; RVR) and scholarship (FCCM) granted by the National Council for Scientific and Technological Development (CNPq, Brazil).

References

Figure 1
Figure 2
Figure 3

![Graph showing Rubisco and PEPC activity under different treatments.](image-url)
Figure 4
Figure 5
Figure 6
Figure 7

Leaf

Root

Control WD WDG

Control WD WDG

i Mn-SOD

ii Fe-SOD

iii iv Cu/Zn-SOD

v Cu/Zn-SOD

vi Mn-SOD

vii Cu/Zn-SOD

i

ii

iii iv

v

vi

vii Cu/Zn-SOD

Mn-SOD

Cu/Zn-SOD
Fig. 1. Leaf relative water content (RWC, in A) and chlorophyll content (B) in sugarcane plants maintained well-hydrated (Control), subjected to water deficit and sprayed with water (WD) or subjected to WD and sprayed with GSNO 100 µM (WDG). The shaded area indicates recovery period, when plants were moved to nutrient solution used in control treatment. Each symbol represents the mean value of four replications ± standard deviation. Different lowercase letters indicate statistical difference between treatments (Scott-Knott test, P<0.05).

Fig. 2. Leaf CO2 assimilation (A, in A), stomatal conductance (gS, in B), intercellular CO2 concentration (Ci, in C), apparent electron transport rate (ETR, in D), ratio of electron transport rate and CO2 assimilated (ETR/A, in E), and non-photochemical quenching (NPQ, in F) in sugarcane plants maintained well-hydrated (Control), subjected to water deficit and sprayed with water (WD) or subjected to WD and sprayed with GSNO 100 µM (WDG). The shaded area indicates recovery period, when plants were moved to nutrient solution used in control treatment. Each symbol represents the mean value of four replications ± standard deviation. Different lowercase letters indicate statistical difference between treatments (Scott-Knott test, P<0.05).

Fig. 3. In vitro activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, in A) and phosphoenolpyruvate carboxylase (PEPC, in B) in sugarcane plants maintained well-hydrated (Control), subjected to water deficit and sprayed with water (WD) or subjected to WD and sprayed with GSNO 100 µM (WDG). Evaluations were done at the maximum water deficit. In A, Rubisco activation state is shown as insert. The data represents the mean value of three replications ± standard deviation. Different lowercase letters indicate statistical difference between treatments (Scott-Knott test, P<0.05).

Fig. 4. Cross section of sugarcane leaves with H2O2 localization stained brown by DAB. A, overview of samples with no H2O2 accumulation, the square on the top left identify the leaf region shown in pictures B to D with mesophyll cells (mc) close to the stomata (st). B, well-hydrated (Control) samples. C, sample subjected to water deficit (WD). D, samples subjected to WD and sprayed with GSNO 100 µM (WDG). ep: epidermis, bsc: bundle-sheath cells. Bars: A = 50 µm, B-D = 20µm.

Fig. 5. Concentration of superoxide anion (O2−, in A and B) and malondialdehyde (MDA in C and D) in leaves (A and C) and roots (B and D) in sugarcane plants maintained well-hydrated (Control), subjected to water deficit and sprayed with water (WD) or subjected to WD and sprayed with GSNO 100 µM (WDG). ME indicates maximum water deficit and Rec and shaded area indicate recovery period. The data represents the mean value of three replications ± standard deviation. Different lowercase letters indicate statistical difference between treatments (Scott-Knott test, P<0.05).

Fig. 6. Activity of catalase (CAT, in A and B), ascorbate peroxidase (APX, C and D) and superoxide dismutase (SOD, in E and F) in leaves (A, C and E) and roots (in B, D and F) in sugarcane plants maintained well-hydrated (Control), subjected to water deficit and sprayed with water (WD) or subjected to WD and sprayed with GSNO 100 µM (WDG). ME indicates maximum water deficit and Rec and shaded area indicate recovery period. The data represents the mean value of three replications ± standard deviation. Different lowercase letters indicate statistical difference between treatments (Scott-Knott test, P<0.05).

Fig. 7. Superoxide dismutase isoforms by non-denaturing polyacrylamide gel electrophoresis in leaves and roots in sugarcane plants maintained well-hydrated (Control), subjected to water deficit and sprayed with water (WD) or subjected to WD and sprayed with GSNO 100 µM (WDG). Evaluations were done at the maximum water deficit. Gels are representative of three runs.