Physical activity interventions for fatigue in rheumatoid arthritis: a systematic review

Victoria E Salmon1*, Sarah Hewlett2, Nicola E Walsh2, John R Kirwan4, Fiona Cramp2

1Institute of Health Research, University of Exeter Medical School, Exeter, UK

2Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK

3Academic Rheumatology, University of Bristol, UK

1Institute of Health Research, University of Exeter Medical School, College House, St Luke’s Campus, Heavitree Road, Exeter. EX1 2LU. UK

\texttt{v.salmon@exeter.ac.uk}

ORCID iD: 000-0002-1536-4750

Tel: +44 (0)1392 72 6077

*corresponding author

2Faculty of Health & Applied Sciences, University of the West of England, Blackberry Hill, Bristol. BS16 1DD. UK

\texttt{Fiona.cramp@uwe.ac.uk}

ORCID iD: 0000-0001-8035-9758

Tel: +44 (0)117 3288501

\texttt{Sarah.hewlett@uwe.ac.uk}

ORCID iD: 0000-001-7851-2039
Biographical note:

Victoria Salmon is a research fellow at the University of Exeter Medical School and a member of the Chartered Society of Physiotherapy.

Fiona Cramp is an Associate Professor in Musculoskeletal Health at the University of the West of England, Bristol and Fellow of the Chartered Society of Physiotherapy.

Sarah Hewlett is Arthritis Research UK Professor of Rheumatology Nursing at the University of the West of England and an honorary consultant nurse at University Hospitals Bristol NHS Foundation Trust.

Nicola Walsh is Professor of Knowledge Mobilisation and Musculoskeletal Health at the University of the West of England, Bristol and Avon Primary Care Research Collaborative.

John Kirwan is Emeritus Professor of Rheumatic Diseases at the University of Bristol, Visiting Professor at the University of the West of England, and a Fellow of the Royal College of Physicians.
Physical activity interventions for fatigue in rheumatoid arthritis

Abstract

Background: Fatigue is a major symptom of rheumatoid arthritis (RA) and the need for effective interventions is evident. Programmes based upon physical activity (PA) have been shown to improve patient reported fatigue in other long term conditions.

Objectives: To investigate the effectiveness of PA interventions for reducing fatigue in adults with RA, and to identify key components of effective PA interventions.

Methods: Methods were based on a previous Cochrane systematic review for non-pharmacological interventions for fatigue in RA. The following electronic databases were searched up to October 2016: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; AMED; CINAHL; PsycINFO; Social Science Citation Index; Web of Science; Dissertation Abstracts International; Current Controlled Trials Register; The National Research Register Archive; The UKCRN Portfolio Database. Randomised controlled trials evaluating PA interventions in people with RA with self-reported fatigue as an outcome measure were included.

Results: Eight studies met the inclusion criteria. Results indicated a small beneficial effect of PA on RA fatigue. The type, frequency, duration and intensity of PA varied between studies. Delivery methods included supervised group programmes and unsupervised home exercise. Information regarding overall adherence to PA interventions was limited.

Conclusions: There is some evidence of the potential for PA to be effective in reducing symptoms of RA fatigue. However, few interventions in the included studies were designed to manage RA fatigue. These findings suggest that further work is needed to identify the optimal PA intervention for fatigue management that meets the needs of people with RA.

Keywords: rheumatoid arthritis, fatigue, physical activity, exercise, systematic review

Funding details: This work was supported by University Hospitals Bristol NHS Foundation Trust
Introduction

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease, predominantly affecting peripheral joints. RA affects 1.16% of women and 0.44% of men in the United Kingdom. It is a progressive, systemic disease associated with considerable morbidity and increased mortality.

Fatigue has been identified as an important symptom of RA, causing distress and disruption to patients’ daily lives and affecting everyday tasks and leisure activities. Reported rates of fatigue in RA vary, possibly due to differences in definition and outcome measurement, but may be as high as 80%. Many patients with RA report that they find it difficult to manage fatigue, and receive little professional support.

The mechanisms and causality of fatigue in RA remain unclear due to its complex and multi-factorial nature. However, it has been suggested that interactions between RA disease processes (e.g. inflammation, pain, disability, muscle effort and deconditioning), thoughts, feelings and behaviours (e.g. illness beliefs, anxiety and depression), and personal life factors (e.g. work, health, support networks) might influence a person’s fatigue experience. Recent multivariate analyses demonstrated that higher disease activity, poor sleep, depression and obesity are independent predictors of RA fatigue.

Description of the intervention

Clinical guidelines for managing RA recommend non-pharmacological approaches to reduce the impact of physical and psychosocial factors associated with RA. These approaches include physical activity (PA) interventions to enhance self-management and coping skills. PA interventions may also be used to manage RA fatigue, aiming to improve engagement in lifestyle PA, such as walking to work, or more formal prescribed exercise programmes. Interventions may specify PA components such as type, intensity, duration and frequency.
For example, some might specify aerobic exercise, such as walking or cycling, or other forms of exercise, such as resistance training or yoga. Prescribed PA or exercise programmes might specify a target duration, intensity and/or frequency. In addition the intervention might take place in a wide range of settings and may be land- or pool-based, such as hydrotherapy, and may or may not be supervised by a healthcare or exercise professional. Delivery may be one-to-one or in groups.

Programmes based upon physical activity (PA) have been shown to improve patient reported fatigue in other long term conditions, such as chronic fatigue syndrome17 and cancer-related fatigue18. Therefore the effectiveness of existing PA and exercise interventions for reducing RA fatigue warrants further exploration.

\textit{How the intervention might work}

A previous Cochrane review19 suggested that PA interventions have the potential to reduce fatigue in RA. Physical inactivity has been significantly associated with RA fatigue, and its effects appear to be mediated by a range of non-RA-specific variables that are important predictors of fatigue, for example, poor sleep quality, depressive symptoms and obesity13. Therefore PA interventions may affect fatigue through their influence on RA disease processes and other psychosocial and lifestyle factors12. For example, there is evidence that dynamic exercise programmes (aerobic capacity and/or muscle strength training) in RA have a positive effect on aerobic capacity20. This type of PA might contribute to an improvement in RA fatigue through increased cardio-respiratory fitness and muscle strength. An improvement in physiological function could result in less effort required for specific tasks, thus reducing subsequent experiences of fatigue.

Given the multi-factorial nature of fatigue, improvements in physiological function alone are unlikely to have a large impact. Modified levels of PA might also improve psychosocial aspects of fatigue, for example, regular participation in PA might increase self-
efficacy and a sense of self-control for patients with RA. This could positively impact cognitive and behavioural issues that might contribute to RA fatigue. Additionally, there is evidence that PA can address other predictors of fatigue that are not unique to RA, such as depression and anxiety. Regular participation in PA might reduce the impact of RA fatigue by moderating these associated risk factors.

Why it is important to do this review

There are currently few published trials primarily investigating interventions for RA fatigue. The search conducted in a Cochrane review identified research reports up to October 2012. The review presented in this paper aimed to identify evidence that has been published since this date, and to ascertain key components of PA interventions that might be used to manage RA fatigue.

Methods

Methods were based on a Cochrane review for non-pharmacological interventions for fatigue in RA.

Criteria for considering studies for this review

Randomised controlled trials (RCTs) of interventions for adults with confirmed RA, with fatigue reported as a primary or secondary outcome measure and data reported separately for RA, were included. Where studies reported outcomes for rheumatic conditions or diseases as one population these data were excluded. In addition, included studies must have investigated a PA intervention.

Search methods for identification of studies

The search strategy for the Cochrane review was repeated with the addition of search terms to identify PA interventions (table 1). The following electronic databases were searched...
between October 2012 and October 2016: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; AMED; CINAHL; PsycINFO; Social Science Citation Index; Web of Science; Dissertation Abstracts International; Current Controlled Trials Register; The National Research Register Archive; The UKCRN Portfolio Database.

Table 1. Search strategy

Data collection and analysis

Selection of studies

Titles and abstracts were screened for inclusion criteria by two reviewers (FC, VS). Full text reports were retrieved where studies appeared to meet these criteria, or where it was unclear whether a study should be excluded from the abstract or title alone. Potentially relevant reports were discussed between reviewers, one of whom was also first author on the Cochrane review (FC)\(^{19}\). Data from conference abstracts were not included in the current review unless corresponding full text articles were available. Abstract authors were not contacted.

Data extraction and management

Data were extracted from newly identified studies by one reviewer (VS) using a data extraction form modified from the original Cochrane review, and included: intervention details; participants’ health status; assignment to study arm; outcome measures; timing of measurements; adherence to intervention and control; sample size; statistical analysis methods; results for fatigue outcomes; and long-term follow-up data.

Risk of bias

Risk of bias was assessed using the Cochrane risk of bias tool\(^ {25} \).
Measures of treatment effect

The Cochrane review used a meta-analysis to combine mean change scores from pre- to post-test for five of the included PA studies19. The Cochrane handbook advises that a new meta-analysis incorporating data from newly identified and included studies should only be performed if deemed appropriate by review authors26. It was decided that data from additional studies would be incorporated into the meta-analysis if the size of the treatment effect, indicated by standardised mean difference (SMD), differed sufficiently that it would strengthen or alter the existing conclusions. If effect sizes were not available these would be calculated from the published data using methods described in the Cochrane handbook, section 7.7.3.326. Methodological quality of included studies would be considered when making this decision.

Results

Results of the search

Figure 1 illustrates the study selection process.

The six studies investigating PA in the original Cochrane review were retrieved27-32. Following removal of duplicates an additional 44 studies were identified using the keyword search. After title screening 20 articles remained, with seven remaining after screening of abstracts. Of these seven, four were conference abstracts and were not included in this review33-36. Another study was not an RCT37. Two studies were included38, 39.

Figure 1. Flow diagram showing study selection process

Description of studies

The eight included studies are described in table 2.

Table 2. Description of included studies
Participants

Data were available for 540 participants with RA (receiving a PA intervention: n=309; controls: n=231). The number of participants completing the studies ranged from 20 to 220. The mean age ranged from 28.5 to 60 years old. Average age was in the second decade for one study\(^28\), fourth decade for four studies\(^{27,29,30,32}\), fifth decade for two studies\(^{31,39}\) and sixth\(^{38}\) decade for the remaining study. Both males and females were recruited in six studies, all with a higher percentage of females. Two studies only recruited female participants\(^{28,30}\).

All studies reported disease duration with the mean ranging from 8 months to 16 years.

Interventions

Interventions are summarised in table 2.

Length of intervention

Six interventions were 12 weeks in length, one was six weeks\(^{28}\) and another was 24 months\(^{29}\).

Type of physical activity

The type of PA included in the interventions varied, and included aerobic exercise\(^{30,31,38,39}\), pool-based aerobic exercise\(^{27}\), resistance training\(^{29,31,38}\), range of movement exercises\(^{38}\), yoga\(^{28}\) and Tai Chi\(^{32}\). Control interventions included usual care\(^{28}\), usual PA\(^{27,30,31,39}\), and advice and education\(^{32,38}\). In one study the control arm also performed range of movement and stretching exercises alongside usual recreational PA\(^{29}\).

Frequency and duration of physical activity

Exercises were generally performed two to three times weekly for both class- and home-based interventions. Daily range of movement exercises and walking at least five times weekly was encouraged in one study\(^{38}\). Another study encouraged aerobic PA five days per week\(^{39}\). The duration of exercise sessions across the studies varied from 15 to 90 minutes.
One study29 focussed on strength training, therefore the number of sets and repetitions were targeted rather than exercise duration.

\textit{Intensity of physical activity}

Aerobic exercise intensity was targeted at 70-90\% maximum heart rate in three studies27, 30, 31. Two studies reported a more general target of light- to moderate-intensity walking, where participants felt moderately short of breath38, or moderate- to vigorous-intensity aerobic PA39. Interventions that included resistance training set a target intensity of either 40-50\%38 or 50-70\%29 repetition maximum. Of those studies reporting a prescribed aerobic intensity, two reported that adherence to the intensity was not known27, 31. The remaining studies did not adequately describe adherence to PA intensity therefore this is unknown.

\textit{Intervention delivery}

Exercise interventions were often supervised, although three studies investigated the effects of either an unsupervised home exercise programme31, 38 or tailored PA39. One study reported that a physiotherapist guided initial exercises29, but it was unclear whether ongoing exercise was performed with or without supervision. Not all studies described the professional background of the person delivering the intervention. Where reported, physiotherapists27, 29, 39, a yoga instructor28 or physical education graduate students30 provided supervision.

\textit{Intervention adherence}

Intervention adherence was reported in four studies. These included a mean attendance rate at sessions of 96\%28 and 78\%27, median number of sessions attended as 30 out of 36 for both class and home exercise groups31, and mean exercise frequency as 1.5 times weekly in months zero to 12, and 1.4 times weekly in months 13 to 2429. Adherence data for this last study were collected via self-reported exercise diaries, therefore the authors acknowledged that they may be subject to recall bias and inaccurate reporting29.
Outcome measures

A range of self-reported fatigue outcome measures was used. Three studies used two scales28, 32, 39. Two studies reported fatigue as a primary outcome measure38, 39. The primary outcome was not identified in three studies29-31. No details were provided in relation to the design and development of PA interventions, although one study stated that the “goal of the intervention was, in partnership between participant and physical therapist, to devise a mutually agreed self-care plan that guided the participant in managing his or her fatigue”39 (p. 29).

Participants were selected for the presence of fatigue in only one study39.

Adverse events

Only one study explicitly reported that there were no adverse events associated with the intervention32. None of the remaining studies reported adverse events. It is unclear whether this was due to a true absence of adverse events or poor reporting.

Risk of bias

Overall, four studies met three criteria27, 31, 32, 39, three met two criteria38, 29, 38, and one met one criterion30 for low risk of bias (table 3). The percentage risk of bias for each domain across all studies is presented in figure 2.

Table 3. Risk of bias summary for included studies (n=8)

Figure 2: Risk of bias presented as percentages for included studies (n=8)

Random sequence generation and allocation concealment (selection bias)

Random sequence generation was adequately described in five studies. Randomisation was performed using computer-generated random numbers27, 32, 38, 39 or an \textit{a priori} list of randomly generated permutations of three numbers31. Three studies adequately reported allocation concealment. Methods included patients independently choosing a time slot prior to randomisation30 and use of sealed opaque envelopes32, 39.
Blinding (performance and detection bias)

Blinding of participants, personnel and assessors was not reported in three studies\(^{29,30,38}\). The remaining five studies reported blinding of outcome assessors only\(^{27,28,31,32,39}\).

Incomplete outcome data (attrition bias)

The majority of studies (n=6) were considered at low risk of attrition bias, reporting all outcome data and giving reasons for missing data. The remaining studies either did not explain missing data for three participants who withdrew and no fatigue data were presented for controls\(^{30}\), or no data were provided for withdrawals between randomisation and baseline\(^{31}\).

Selective outcome reporting (reporting bias)

Selective reporting was noted in four studies\(^{30-32,39}\). Outcome data for three intervention arms were combined in one study, thus providing insufficient detail regarding the effect of each intervention\(^{30}\). One study reported collecting social support data\(^{31}\) and another collecting information about medications\(^{39}\) but did not report these in the published article. The third study reported recording the number of and reasons for missing both intervention and control arm sessions, but did not present these data\(^{32}\).

Other sources of bias

Only one study was considered free from other sources of bias as specified for this review\(^{31}\). Of the remaining six studies, three were considered at high risk\(^{28,29,32}\) and four had unclear risk of bias from other sources\(^{27,30,38,39}\) (table 4).

Table 4: Reasons for judgement of the risk of other sources of bias
Effect on fatigue

A statistically significant post-test improvement in fatigue scores was reported in the intervention arm compared with controls in five studies \((p<0.05)\)\(^{27,28,32,38,39}\). The between-group difference in median change scores for the Visual Analogue Scale (VAS) for fatigue was reported to be clinically significant in one study\(^{39}\) (minimal clinically important difference (MCID)\(^{40}\): 10) although the difference in change in means of 8.2 did not reach the MCID. Information on the ability of fatigue scales to detect change\(^{40}\) suggests that pre- to post-test between-group differences in change scores in three other studies were clinically significant\(^{28,32,38}\). Changes in the 36 item Short Form Health Survey (SF-36) vitality scores in the remaining study\(^{27}\) fell short of the MCID by 0.6 points\(^{40}\). Although one study reported statistically significant changes in overall symptoms, the significance of changes in fatigue were not reported\(^{31}\). The fatigue change scores presented in the research report did not meet the criteria for MCID for the Multidimensional Assessment of Fatigue scale\(^{40}\). The remaining two studies did not report statistically significant improvements, with one study only recording subjective improvements in fatigue\(^{30}\).

Meta-analysis

In the Cochrane review mean change scores from pre- to post-test were combined in a meta-analysis for six comparisons from five of the six original RCTs\(^{27-29,31,32}\). One study included two intervention arms enabling two comparisons\(^{31}\). Change data for fatigue were not available for the sixth study\(^{30}\). Results from the six original comparisons indicated that PA was statistically more effective than control immediately post-intervention (SMD -0.36, 95% CI -0.62 to -0.10, \(p=0.0066\)), indicating a small beneficial effect of PA on fatigue\(^{19}\).

In this updated review a summary effect size was not presented for one of the additional included studies\(^{36}\). SMD for fatigue outcome was calculated as -0.47, unadjusted for baseline differences, indicating a small effect. When calculating SMD for the study, errors
in the data were noted making it difficult to trust the accuracy of the results. Therefore this study was not included in the meta-analysis. Although the SMD was slightly larger than that obtained in the Cochrane review, methodological concerns meant it would not strengthen or alter the original conclusions. The second study included in the updated review reported a summary effect size for VAS fatigue and the Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF-MDQ)^41, 42. Where more than one fatigue outcome was reported for a study in the original Cochrane review VAS data were included in the meta-analysis^19. The second study included in the updated review reported a summary effect size of 0.37 for VAS fatigue suggesting a small beneficial effect^39. As the size of the treatment effect was very similar to that of the original review it was decided that there was no need to repeat the meta-analysis.

Long-term follow-up

One study re-assessed outcomes two months after treatment^28. Significant post-treatment effects of the intervention on fatigue were not maintained at 2-month follow-up. In another study post-treatment effects of the intervention on VAS fatigue and BRAF-MDQ total fatigue scores were no longer significant six months after baseline^39. However, significant improvements in the BRAF-MDQ physical fatigue and living with fatigue subscales were maintained (p<0.05). Follow-up data were not available for any other studies.

Discussion

This review investigated the effectiveness of PA interventions for reducing RA fatigue. Eight RCTs investigating PA interventions and including a fatigue outcome measure were included, providing data for 540 adults with RA. A previous meta-analysis incorporating data from five of the eight studies demonstrated a small significant effect for PA when compared with a control intervention, suggesting that PA may be useful for managing fatigue in RA in the
short-term. This update identified two new RCTs that reported statistically significant changes in fatigue outcomes following a home exercise intervention \((p=0.04)\) and a person-centred physical therapy intervention focused on tailoring health-enhancing PA \((p<0.05)\) compared with controls. However, poor methodological quality and reporting errors, and similar effect sizes meant that inclusion of new data in the meta-analysis was not warranted. The limited follow-up data for included studies limits our understanding of any ongoing effects of PA on RA fatigue.

Components of PA interventions identified in this review included type of PA, mode of delivery, intervention length and duration, frequency and intensity of PA. Interventions were varied and included land- and pool-based aerobic exercise, yoga, Tai Chi and resistance training. Evidence from other long-term conditions suggests that aerobic exercise may be particularly beneficial for managing fatigue. Delivery methods included supervised class programmes, unsupervised home exercise and individual person-centred physical therapy. Intervention length was reasonably consistent, with the majority lasting 12 weeks. This is similar to the length of PA interventions for managing fatigue in chronic fatigue syndrome.

Several studies prescribed the intensity, duration and frequency of PA. These varied between interventions and it is unclear whether these parameters were successfully adhered to throughout the intervention period. Overall, there was insufficient information from these interventions to judge whether specific PA parameters are more or less likely to be effective for fatigue management in RA. This is a common issue, and data regarding dose response for exercise in general are rarely available. Considerable variation in the intensity, duration and frequency of PA sessions for fatigue management in other long-term conditions has also been reported, although it has been suggested that commencing PA at a lower intensity might be more effective in the treatment of chronic fatigue syndrome.
Information regarding overall adherence to PA interventions was limited, making it difficult to determine reasons for participation or non-participation in these programmes. PA research relies on voluntary participation. Consequently, recruitment is often biased towards those who are interested in or motivated to perform PA. Self-selection of participants in PA trials also has implications for the control arm. As a sub-group of motivated participants, they might be more likely to engage in PA even if they have been asked not to, thus increasing the potential for contamination and reducing potential effect size for the PA intervention. This limits external validity of the findings.

Reasons for declining participation in the included studies were often not reported. Where they were, reasons included being busy, travel distance or disinterest. These reasons have been cited in other PA trials in RA. An in-depth analysis of participants and non-participants in a recent PA trial in RA concluded that only 8% of the initial target population were assessed at baseline, despite 62% expressing interest prior to receiving information about location, timing and cost of the PA interventions. It is possible that PA interventions only reach a small minority of eligible participants in clinical practice.

The included studies were of moderate methodological quality, with small group sizes and lack of blinding being particularly problematic. Three studies reported a sample size calculation, but only one was based upon fatigue as the primary outcome. It was unclear whether other studies reporting significant changes in fatigue were adequately powered to detect changes in these outcomes. Small samples and lack of statistical power limit the ability to generalise results to the wider RA population.

Blinding of participants is often not possible for PA interventions, and the use of self-reported questionnaires for measuring fatigue outcome negates the usefulness of blinding the outcome assessor. Therefore, risk of performance and detection bias is difficult to minimise for these interventions. Nonetheless, attempts to minimise this risk were only
reported in one study39. Poor reporting was noted in several papers, making it difficult to
determine the overall quality of the research. The majority of studies were at high risk of bias
from sources such as contamination between groups, further limiting the internal validity of
the research findings, for example, where control participants performed range of movement
and stretching exercises alongside recreational PA29.

Only two of the interventions specifically aimed to manage fatigue38, 39, although
descriptions of intervention design and development processes were minimal for all studies.
Similarly, only one study selected participants for the presence of fatigue39, therefore this
symptom may not have been a significant problem for participants in other studies.
Consequently, these fatigue data are likely to underestimate the effectiveness of PA for RA
fatigue management, as fatigue has been cited as a barrier to PA47. Participants who withdrew
from a recent PA trial between agreeing to take part and baseline assessment reported more
fatigue than those who were assessed (p=0.009)44. It is possible that eligible patients who
experienced greater fatigue declined participation in studies included in this review and the
resulting participants might be less representative of fatigued patients with RA. As a result,
the true effectiveness of PA for reducing fatigue in RA is difficult to determine.

Variations in participant characteristics in included studies may further limit the
external validity of the results. This includes imbalances in gender, with the inclusion of
women only in two studies and fewer men included overall. Although RA affects more
women than men2, men tend to be under-represented in PA trials in RA44, 48. Also, men with
RA may require different support strategies than women49. As a result, recruitment of
predominantly women to a PA intervention may not simply be indicative of gender
differences in prevalence rates of RA, but may also reflect different coping styles and
management preferences. It cannot be presumed, therefore, that these PA interventions would
be effective for reducing fatigue in both men and women with RA.
The range of ages included in studies was also not representative of the general RA population. Peak age of incidence in the UK has been reported as 55-64 years old in women and 65-75 years old in men\(^2\). However, only three studies reported the average age of participants as falling within the fifth and sixth decades, and none in the seventh decade. This may reflect other observations that participants in PA trials tend to be younger\(^{44, 45}\).

Limitations of the review
There are several limitations to the current review. Conference abstracts were excluded, study authors were not contacted and grey literature was not searched. This may have resulted in omission of relevant data.

Only one reviewer (VS) completed data extraction and critical appraisal of the new studies in this update. However, overall results were discussed with a second reviewer (FC) who had been involved with the original review, and all authors were familiar with the eight papers and contributed to the review write-up. Similarly, the Cochrane meta-analysis was not revised to include data from additional studies. However, their inclusion is unlikely to have altered the current conclusions. Finally, the search was limited to RCTs in order to determine effectiveness of the interventions of interest. By limiting the search in this way potentially useful evidence from non-randomised and qualitative studies will have been missed.

Conclusions
Although there is some evidence from a previous meta-analysis of the potential for PA to be effective in reducing symptoms of fatigue in RA\(^19\), this evidence remains limited. Since publication of the original Cochrane review, two further RCTs have been published, also suggesting a positive effect of exercise on fatigue\(^{38, 39}\). However, methodological flaws and poor reporting undermine the trustworthiness of these findings. Additionally, only two of the PA interventions in the included studies specifically aimed to manage RA fatigue, and few
participants were selected to take part in the studies based on their fatigue experience, making it difficult to establish the true effectiveness of these interventions for managing RA fatigue. Further research is needed to identify the optimal PA intervention, including key components and parameters such as type and intensity of PA, for managing fatigue for people with RA.

Acknowledgements, avoiding identifying any of the authors prior to peer review

Disclosure statement: No potential conflict of interest was reported by authors.

Funding details: This work was supported by University Hospitals Bristol NHS Foundation Trust.

References:

guideline for the management of rheumatoid arthritis (after the first 2 years).

40. Hewlett S, Dures E, Almeida C. Measures of fatigue: Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ), Bristol Rheumatoid Arthritis Fatigue Numerical Rating Scales (BRAF NRS) for Severity, Effect, and Coping, Chalder Fatigue Questionnaire (CFQ), Checklist Individual Strength (CIS20R and CIS8R), Fatigue Severity Scale (FSS), Functional Assessment Chronic Illness Therapy (Fatigue) (FACIT-F), Multi-Dimensional Assessment of Fatigue (MAF), Multi-Dimensional Fatigue Inventory (MFI), Pediatric Quality Of Life (PedsQL) Multi-Dimensional Fatigue Scale, Profile of Fatigue (ProF), Short Form 36 Vitality Subscale (SF-36 VT), and Visual Analog Scales (VAS). Arthritis Care Res. 2011; 63(S11):S263-S286.

Table 1. Example search strategy for use in MEDLINE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>exp arthritis, rheumatoid/</td>
</tr>
<tr>
<td>2</td>
<td>((rheumatoid or reumatoid or revmatoi or rheumatic or reumatic or revmatic or rheumat$ or reumat$ or revmarthrit$) adj3 (arthrit$ or artrit$ or diseas$ or condition$ or nodule$)).tw.</td>
</tr>
<tr>
<td>3</td>
<td>1 or 2</td>
</tr>
<tr>
<td>4</td>
<td>exp Fatigue/</td>
</tr>
<tr>
<td>5</td>
<td>fatigue$.tw.</td>
</tr>
<tr>
<td>6</td>
<td>(tired$ or weary or weariness or exhaustion or exhausted).tw.</td>
</tr>
<tr>
<td>7</td>
<td>((astenia or asthenic) and syndrome).tw.</td>
</tr>
<tr>
<td>8</td>
<td>((lack or loss or lost) adj3 (energy or vigo?r)).tw.</td>
</tr>
<tr>
<td>9</td>
<td>(apath$ or lassitude or weak$ or letharg$).tw.</td>
</tr>
<tr>
<td>10</td>
<td>(feel$ adj3 (drained or sleep$ or sluggish)).tw.</td>
</tr>
<tr>
<td>11</td>
<td>vitality.tw.</td>
</tr>
<tr>
<td>12</td>
<td>or/4-11</td>
</tr>
<tr>
<td>13</td>
<td>randomized controlled trial.pt.</td>
</tr>
<tr>
<td>14</td>
<td>controlled clinical trial.pt.</td>
</tr>
<tr>
<td>15</td>
<td>randomized.ab.</td>
</tr>
<tr>
<td>16</td>
<td>placebo.ab.</td>
</tr>
<tr>
<td>17</td>
<td>drug therapy.fs.</td>
</tr>
<tr>
<td>18</td>
<td>randomly.ab.</td>
</tr>
<tr>
<td>19</td>
<td>trial.ab.</td>
</tr>
<tr>
<td>20</td>
<td>groups.ab.</td>
</tr>
<tr>
<td>21</td>
<td>or/13-20</td>
</tr>
<tr>
<td>22</td>
<td>(animals not (humans and animals)).sh.</td>
</tr>
<tr>
<td>23</td>
<td>21 not 22</td>
</tr>
<tr>
<td>24</td>
<td>and/3,12,23</td>
</tr>
<tr>
<td>25</td>
<td>exercise$</td>
</tr>
<tr>
<td>26</td>
<td>resistance adj (train$ OR prog$)</td>
</tr>
<tr>
<td>27</td>
<td>strength adj (train$ OR prog$)</td>
</tr>
<tr>
<td>28</td>
<td>flexibility adj (train$ OR prog$)</td>
</tr>
<tr>
<td>29</td>
<td>endurance adj (train$ OR prog$)</td>
</tr>
<tr>
<td>30</td>
<td>aerobic$</td>
</tr>
<tr>
<td>31</td>
<td>physical$ activ$</td>
</tr>
<tr>
<td>32</td>
<td>physical$ therap$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td>physical$ exercise$</td>
</tr>
<tr>
<td>34</td>
<td>interval training</td>
</tr>
<tr>
<td>35</td>
<td>sport$</td>
</tr>
<tr>
<td>36</td>
<td>movement therap$</td>
</tr>
<tr>
<td>37</td>
<td>stretching</td>
</tr>
<tr>
<td>38</td>
<td>dance therap$</td>
</tr>
<tr>
<td>39</td>
<td>Tai Ji or Tai Chi or Tai-Ji or Tai-Chi</td>
</tr>
<tr>
<td>40</td>
<td>Walking</td>
</tr>
<tr>
<td>41</td>
<td>Yoga</td>
</tr>
<tr>
<td>42</td>
<td>Hydrotherap$</td>
</tr>
<tr>
<td>43</td>
<td>or/25-42</td>
</tr>
<tr>
<td>44</td>
<td>and/24,43</td>
</tr>
</tbody>
</table>

$=$ used to identify all words beginning with the stem
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome measure</td>
<td>Aerobic capacity, SF-36 physical</td>
<td>FSS, PSQI</td>
<td>HRQoL</td>
<td>VAS fatigue</td>
<td>Not identified</td>
<td>Not identified</td>
<td>Not identified</td>
<td>Attainment of ACR 20 response criteria</td>
</tr>
<tr>
<td>Fatigue scale</td>
<td>SF-36 vitality</td>
<td>FSS</td>
<td>SF-36 vitality, FACIT-F</td>
<td>VAS fatigue, BRAF MDQ</td>
<td>VAS fatigue</td>
<td>Likert scale rating of fatigue</td>
<td>MAF</td>
<td>VAS fatigue, SF-36 vitality</td>
</tr>
<tr>
<td>Type of PA</td>
<td>Aerobic capacity, dynamic and static strengthening and endurance exercises in a temperate pool</td>
<td>Home exercise programme (resistance exercise, ROM, walking)</td>
<td>Iyengar Yoga</td>
<td>Individually tailored aerobic PA</td>
<td>Dynamic strength training, using elastic bands and dumbbells, plus recreational PA, e.g. walking, cycling</td>
<td>Bicycle ergometer</td>
<td>Low-impact aerobics plus strengthening, Intervention arm I = class exercise, Intervention arm II = home exercise</td>
<td>Tai Chi</td>
</tr>
<tr>
<td>Duration and frequency of PA</td>
<td>45 min, 2 x weekly</td>
<td>30-60 min, Resistance training 3 x weekly, daily ROM, walking 5 x weekly</td>
<td>90 min, 2 x weekly</td>
<td>20-30 min, 3-5 x weekly</td>
<td>2 sets per exercise, 8-12 repetitions, 2 x weekly</td>
<td>15-35 min, 3 x weekly</td>
<td>60 min, 3 x weekly</td>
<td>60 min, 2 x weekly</td>
</tr>
<tr>
<td>Intensity of PA</td>
<td>75% HRmax</td>
<td>Resistance: 40-50% 1 RM; walking: light to moderate-intensity (moderately short of breath on exertion)</td>
<td>N/A</td>
<td>Moderate to vigorous (not defined)</td>
<td>50-70% RM</td>
<td>70% HRmax</td>
<td>60-80% HRmax</td>
<td>N/A</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Length of intervention</td>
<td>12 weeks</td>
<td>12 weeks</td>
<td>6 weeks</td>
<td>12 weeks</td>
<td>24 months</td>
<td>12 weeks</td>
<td>12 weeks</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Control intervention</td>
<td>Continue daily activities</td>
<td>Advice on benefits of exercise in RA</td>
<td>Usual care waitlist control</td>
<td>Continue usual physical and social activities, pharmacologic treatment and other treatments associated with care</td>
<td>ROM and stretching exercises 2 x weekly, continue recreational activity, no strength training</td>
<td>Continue daily activities</td>
<td>Continue baseline exercise levels</td>
<td>Stretching training and wellness education</td>
</tr>
<tr>
<td>Adherence to intervention and control</td>
<td>Mean attendance at intervention sessions = 78%</td>
<td>Not reported</td>
<td>96% intervention sessions attended</td>
<td>Not reported</td>
<td>Intervention group compliance: Months 0-12: Average 1.5 x weekly exercising; Months 13-24: average 1.4 x weekly</td>
<td>Not reported</td>
<td>Median of 30 of 36 sessions completed by both class and home exercise groups</td>
<td>Not reported</td>
</tr>
<tr>
<td>Lead author, (year)</td>
<td>Results for fatigue outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilberg, (2005)</td>
<td>Significant between-group difference in change in fatigue score at 12 weeks in favour of the intervention (p<0.05) Between-group difference in change scores = 10.1 (MCID: 10.7) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durcan, (2014)</td>
<td>Significant between-group difference in change in fatigue score at 12 weeks in favour of the intervention (p=0.04) Reported between-group difference in change scores = 11.3 (18%) (MCID: 15%) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evans, (2013)</td>
<td>SF-36 significant post-treatment group differences in favour of the intervention (p<0.01) Between-group difference in change scores = 17 (MCID: 10.7) a FACIT-F significant changes (p<0.05) Between-group difference in change scores = 7.9 (MCID: 3-4) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldthusen, (2016)</td>
<td>Significant between-group difference in change in mean VAS fatigue score at 12 weeks in favour of the intervention (p=0.042) Between-group difference in median change scores = 12 (MCID: 10) a BRAF MDQ significant changes (p=0.023), including subscales Physical fatigue (p=0.033), Living with fatigue (p=0.034) and Emotional fatigue (p=0.048)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hakkinen, (2003)</td>
<td>No significant change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harkcom, (1985)</td>
<td>Subjective reporting of improvement in fatigue in intervention arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuberger, (2007)</td>
<td>Intervention arm I: Significant decrease in overall symptoms at 12 weeks in favour of the intervention (p<0.04) Between-group difference in fatigue change scores (class vs control) = 3.17 (significance not reported) (MCID: 5.0) a Intervention arm II: not significant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, (2008)</td>
<td>Significant between-group difference on SF-36 vitality in favour of the intervention (p=0.01) Between-group difference in change scores = 18 (MCID: 10.7) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRAF MDQ=Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire; FACIT-F=Functional Assessment of Chronic Illness Therapy Fatigue Subscale; FSS=Fatigue Severity Scale; HAQ=Health Assessment Questionnaire; HRmax=maximum heart rate; HRQoL=Health Related Quality of Life; MACTAR=McMaster Toronto Arthritis Patient Preference Disability Questionnaire; MAF=Multidimensional Assessment of Fatigue Questionnaire; MCID=minimal clinically important difference; N/A=not applicable; PA=physical activity; PSQI=Pittsburgh Sleep Quality Index; RA=rheumatoid arthritis; RM=repetition maximum; ROM=range of movement; SF-36=36 item Short Form Health Survey; VAS=visual analogue scale

*Article identified in updated search
“Data from Hewlett, Dures and Almeida, (2011)”
Table 3. Risk of bias summary for included studies (n=8)

<table>
<thead>
<tr>
<th>Lead author, year</th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding (performance and detection)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (reporting bias)</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilberg, (2005)(^{27})</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Evans, (2013)(^{28})</td>
<td>?</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Feldthusen, (2016)(^{39})</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hakkinen, (2003)(^{29})</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Harkcom, (1985)(^{30})</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Neuberger, (2007)(^{31})</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Wang, (2008)(^{32})</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = low risk; ? = unclear risk; - = high risk

Table 4: Reasons for judgement of the risk of other sources of bias

<table>
<thead>
<tr>
<th>Lead author, (year)</th>
<th>Risk of other sources of bias</th>
<th>Reason for judgement of risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilberg, (2005)(^{27})</td>
<td>?</td>
<td>No reporting of monitoring of adherence of control arm to home exercise and daily activities</td>
</tr>
<tr>
<td>Durcan, (2014)(^{38})</td>
<td>?</td>
<td>No reporting of adherence to physical activity or exercise in either arm</td>
</tr>
<tr>
<td>Evans, (2013)(^{28})</td>
<td>-</td>
<td>$10 travel expenses paid for intervention participants travelling more than 25 miles</td>
</tr>
<tr>
<td>Feldthusen, (2016)(^{39})</td>
<td>?</td>
<td>No reported monitoring of access to treatment associated with care, e.g. physiotherapy, in control arm</td>
</tr>
<tr>
<td>Hakkinen, (2003)(^{29})</td>
<td>-</td>
<td>Control group performed exercises, n=3 started exercising in a gym, monitoring by diaries not reported for control arm</td>
</tr>
<tr>
<td>Harkcom, (1985)(^{30})</td>
<td>?</td>
<td>Control data for fatigue not reported so unable to determine baseline differences. Monitoring of adherence to physical</td>
</tr>
<tr>
<td>Study</td>
<td>Risk Level</td>
<td>Details</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Neuberger, (2007)</td>
<td>+</td>
<td>No evidence of other sources of bias</td>
</tr>
<tr>
<td>Wang, (2008)</td>
<td>-</td>
<td>Control group performed daily stretching exercises. Monitoring of adherence to physical activity not reported</td>
</tr>
</tbody>
</table>

+ = low risk; ? = unclear risk; - = high risk
Figure 1. Flow diagram showing study selection process

Search date: October 2012-2016

Number of records following removal of duplicates: N=44

Number of abstracts screened: N=20

Number of abstracts excluded: N=13

Number of full-text articles assessed for eligibility: N=7

Number of full-text articles excluded: N=5

Total number of articles included in qualitative synthesis: N=8

Total number of articles included in updated quantitative synthesis: N=0

Articles included from original Cochrane review (Cramp et al., 2013): N=6
Figure 2: Risk of bias presented as percentages for included studies (n=8)