Operating binary strings using gliders and eaters in reaction-diffusion cellular automaton

Adamatzky, A., Martinez, G. J., Zhang, L. and Wuensche, A. (2010) Operating binary strings using gliders and eaters in reaction-diffusion cellular automaton. Mathematical and Computer Modelling, 52 (1-2). pp. 177-190. ISSN 0895-7177 Available from: http://eprints.uwe.ac.uk/7885

Full text not available from this repository

Publisher's URL: http://dx.doi.org/10.1016/j.mcm.2010.02.006


We study transformations of 2-, 4- and 6-bit numbers in interactions between traveling and stationary localizations in the Spiral Rule reaction-diffusion cellular automaton. The Spiral Rule automaton is a hexagonal ternary-state two-dimensional cellular automaton -- a finite-state machine imitation of an activator-inhibitor reaction-diffusion system. The activator is self-inhibited in certain concentrations. The inhibitor dissociates in the absence of the activator. The Spiral Rule cellular automaton has rich spatio-temporal dynamics of traveling (glider) and stationary (eater) patterns. When a glider brushes an eater the eater may slightly change its configuration, which is updated once more every next hit. We encode binary strings in the states of eaters and sequences of gliders. We study what types of binary compositions of binary strings are implementable by sequences of gliders brushing an eater. The models developed will be used in future laboratory designs of reaction-diffusion chemical computers.

Item Type:Article
Uncontrolled Keywords:cellular automata, reaction-diffusion computing, gliders, collision-based computing
Faculty/Department:Faculty of Environment and Technology
ID Code:7885
Deposited By: A. Lawson
Deposited On:02 Jun 2010 14:29
Last Modified:12 Apr 2016 12:20

Request a change to this item